0020-ggml-No-alloc-mode.patch 26 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
2
3
4
5
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Jesse Gross <jesse@ollama.com>
Date: Wed, 23 Jul 2025 11:58:49 -0700
Subject: [PATCH] ggml: No-alloc mode

6
Callers can set a scheduler to be no-alloc, meaning that
Jesse Gross's avatar
Jesse Gross committed
7
8
9
10
it does not allocate memory for tensors or operations. This can
be used for calculating memory requirements. Tensors and graphs
must be recreated with no-alloc set to false before loading data.
---
11
12
13
 ggml/include/ggml-backend.h     |   1 +
 ggml/src/ggml-backend-impl.h    |  16 +++
 ggml/src/ggml-backend.cpp       |  72 ++++++++++-
14
 ggml/src/ggml-cuda/common.cuh   |  58 ++++++++-
15
 ggml/src/ggml-cuda/ggml-cuda.cu | 217 ++++++++++++++++++++++++++------
16
 5 files changed, 320 insertions(+), 44 deletions(-)
Jesse Gross's avatar
Jesse Gross committed
17
18

diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h
19
index 2763f2bd6..b3b5b356a 100644
Jesse Gross's avatar
Jesse Gross committed
20
21
--- a/ggml/include/ggml-backend.h
+++ b/ggml/include/ggml-backend.h
22
@@ -305,6 +305,7 @@ extern "C" {
23
24
25
26
27
 
     // Initialize a backend scheduler, backends with low index are given priority over backends with high index
     GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel, bool op_offload);
+    GGML_API ggml_backend_sched_t ggml_backend_sched_new_ext(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel, bool op_offload, bool alloc_buffers);
     GGML_API void                 ggml_backend_sched_free(ggml_backend_sched_t sched);
Jesse Gross's avatar
Jesse Gross committed
28
 
29
     // Provide a hint on the batch size to optimize processing (uses heuristics if unset)
Jesse Gross's avatar
Jesse Gross committed
30
diff --git a/ggml/src/ggml-backend-impl.h b/ggml/src/ggml-backend-impl.h
31
index 0f5b03cef..7bdf9d81f 100644
Jesse Gross's avatar
Jesse Gross committed
32
33
--- a/ggml/src/ggml-backend-impl.h
+++ b/ggml/src/ggml-backend-impl.h
34
35
36
37
38
39
40
41
42
43
44
@@ -26,12 +26,17 @@ extern "C" {
         size_t                (*get_alloc_size)(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
         // (optional) check if tensor data is in host memory and uses standard ggml tensor layout (defaults to false)
         bool                  (*is_host)       (ggml_backend_buffer_type_t buft);
+
+        // (optional) returns a dummy buffer that is equivalent to one created by alloc_buffer but without actually being backed
+        // by memory
+        ggml_backend_buffer_t (*noalloc_buffer)(ggml_backend_buffer_type_t buft, size_t size);
     };
 
     struct ggml_backend_buffer_type {
Jesse Gross's avatar
Jesse Gross committed
45
46
47
48
49
50
51
         struct ggml_backend_buffer_type_i  iface;
         ggml_backend_dev_t device;
         void * context;
+        bool no_alloc;
     };
 
     //
52
@@ -63,6 +68,7 @@ extern "C" {
Jesse Gross's avatar
Jesse Gross committed
53
54
55
56
57
58
59
         void * context;
         size_t size;
         enum ggml_backend_buffer_usage usage;
+        bool no_alloc;
     };
 
     GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
60
61
62
63
@@ -117,6 +123,16 @@ extern "C" {
 
         // (optional) sort/optimize the nodes in the graph
         void                      (*graph_optimize)    (ggml_backend_t backend, struct ggml_cgraph * cgraph);
64
65
66
67
68
69
70
71
72
73
74
75
76
+
+        // (optional) reserves intermediate buffers needed for the compution
+        // if alloc is true, memory is actually allocated, otherwise the required amount is just returned by buffer_size
+        enum ggml_status          (*graph_reserve)     (ggml_backend_t backend, struct ggml_cgraph * cgraph, bool alloc);
+
+        // (optional) returns the memory needed after calling graph_reserve
+        size_t                    (*buffer_size)       (ggml_backend_t backend);
+
+        // (optional) frees memory from intermediate buffers that was allocated either by graph_compute or graph_reserve
+        void                      (*reset)             (ggml_backend_t backend);
     };
 
     struct ggml_backend {
Jesse Gross's avatar
Jesse Gross committed
77
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
78
index 41eef3b5f..c81a2e48a 100644
Jesse Gross's avatar
Jesse Gross committed
79
80
--- a/ggml/src/ggml-backend.cpp
+++ b/ggml/src/ggml-backend.cpp
81
@@ -41,6 +41,19 @@ ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t
Jesse Gross's avatar
Jesse Gross committed
82
83
84
85
         return ggml_backend_buffer_init(buft, {}, NULL, 0);
     }
 
+    if (buft->no_alloc) {
86
87
88
89
90
91
92
93
+        ggml_backend_buffer_t buf;
+
+        if (buft->iface.noalloc_buffer != NULL) {
+            buf = buft->iface.noalloc_buffer(buft, size);
+        } else {
+            buf = ggml_backend_buffer_init(buft, {}, NULL, size);
+        }
+
Jesse Gross's avatar
Jesse Gross committed
94
95
96
97
+        buf->no_alloc = true;
+        return buf;
+    }
+
Daniel Hiltgen's avatar
Daniel Hiltgen committed
98
     GGML_ASSERT(buft);
Jesse Gross's avatar
Jesse Gross committed
99
100
     return buft->iface.alloc_buffer(buft, size);
 }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
101
@@ -95,7 +108,8 @@ ggml_backend_buffer_t ggml_backend_buffer_init(
Jesse Gross's avatar
Jesse Gross committed
102
103
104
105
106
107
108
109
110
         /* .buft      = */ buft,
         /* .context   = */ context,
         /* .size      = */ size,
-        /* .usage     = */ GGML_BACKEND_BUFFER_USAGE_ANY
+        /* .usage     = */ GGML_BACKEND_BUFFER_USAGE_ANY,
+        /* .no_alloc  = */ false
     };
 
     return buffer;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
111
@@ -127,6 +141,12 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
Jesse Gross's avatar
Jesse Gross committed
112
113
114
115
116
117
118
119
120
121
122
123
         return NULL;
     }
 
+    // If we aren't allocating memory, return a placeholder non-NULL pointer
+    // that meets alignment requirements
+    if (buffer->no_alloc) {
+        return (void *)ggml_backend_buffer_get_alignment(buffer);
+    }
+
     void * base = buffer->iface.get_base(buffer);
 
     GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
124
125
@@ -725,6 +745,12 @@ struct ggml_backend_sched {
     int batch_size; // a hint on the batch size to optimize processing, -1 to use heuristics
126
127
128
129
130
131
132
133
134
135
136
 
     int debug;
+
+    // allocate buffers on attached ggml_backend_buffer_type_t's and during reservation
+    // if false, dummy buffers are used for faster memory sizing calculations
+    // the scheduler needs to be recreated with allocated buffers before it can be used
+    // for computation
+    bool alloc_buffers;
 };
 
 #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
137
@@ -1608,6 +1634,17 @@ ggml_backend_sched_t ggml_backend_sched_new(
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
         size_t graph_size,
         bool parallel,
         bool op_offload) {
+            return ggml_backend_sched_new_ext(backends, bufts, n_backends, graph_size, parallel, op_offload, true);
+        }
+
+ggml_backend_sched_t ggml_backend_sched_new_ext(
+        ggml_backend_t * backends,
+        ggml_backend_buffer_type_t * bufts,
+        int n_backends,
+        size_t graph_size,
+        bool parallel,
+        bool op_offload,
+        bool alloc_buffers) {
     GGML_ASSERT(n_backends > 0);
     GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
     GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
155
@@ -1649,11 +1686,14 @@ ggml_backend_sched_t ggml_backend_sched_new(
156
157
158
159
160
161
162
163
164
                 sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
             }
         }
+
+        sched->bufts[b]->no_alloc = !alloc_buffers;
     }
 
     sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
     sched->op_offload = op_offload;
165
     sched->batch_size = -1;
166
167
168
169
+    sched->alloc_buffers = alloc_buffers;
 
     ggml_backend_sched_reset(sched);
 
170
@@ -1668,6 +1708,10 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
171
172
173
174
175
176
177
178
179
180
         for (int c = 0; c < sched->n_copies; c++) {
             ggml_backend_event_free(sched->events[b][c]);
         }
+
+        if (sched->backends[b]->iface.reset != NULL) {
+            sched->backends[b]->iface.reset(sched->backends[b]);
+        }
     }
     ggml_gallocr_free(sched->galloc);
     ggml_free(sched->ctx);
181
@@ -1715,6 +1759,24 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
         return false;
     }
 
+    if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
+        return false;
+    }
+
+    struct ggml_backend_sched_split * splits = sched->splits;
+    for (int i = 0; i < sched->n_splits; i++) {
+        struct ggml_backend_sched_split * split = &splits[i];
+        int split_backend_id = split->backend_id;
+        ggml_backend_t split_backend = sched->backends[split_backend_id];
+
+        if (split_backend->iface.graph_reserve != NULL) {
+            enum ggml_status ec = split_backend->iface.graph_reserve(split_backend, &split->graph, sched->alloc_buffers);
+            if (ec != GGML_STATUS_SUCCESS) {
+                return false;
+            }
+        }
+    }
+
     ggml_backend_sched_reset(sched);
 
     return true;
206
@@ -1820,7 +1882,13 @@ size_t ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched,
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
     int backend_index = ggml_backend_sched_backend_id(sched, backend);
     GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
 
-    return ggml_gallocr_get_attempted_buffer_size(sched->galloc, backend_index);
+    size_t size = ggml_gallocr_get_attempted_buffer_size(sched->galloc, backend_index);
+
+    if (backend->iface.buffer_size != NULL) {
+        size += backend->iface.buffer_size(backend);
+    }
+
+    return size;
 }
 
 void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh
Daniel Hiltgen's avatar
Daniel Hiltgen committed
222
index 41ff89c4d..2931c15ca 100644
223
224
--- a/ggml/src/ggml-cuda/common.cuh
+++ b/ggml/src/ggml-cuda/common.cuh
225
@@ -35,6 +35,41 @@
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
 #include "vendors/cuda.h"
 #endif // defined(GGML_USE_HIP)
 
+extern bool reserving_graph;
+
+// If we are reserving the graph, pointers might be invalid and will fail if cudaMemcpyAsync tries to validate them.
+// However, since we don't actually expect a result, we don't need to actually do the memcpy.
+static cudaError_t cudaMemcpyAsyncReserve ( void* dst, const void* src, size_t count, cudaMemcpyKind kind, cudaStream_t stream = 0 ) {
+    if (!reserving_graph) {
+        return cudaMemcpyAsync(dst, src, count, kind, stream);
+    } else {
+        return cudaSuccess;
+    }
+}
+
+static cudaError_t cudaMemcpy2DAsyncReserve ( void* dst, size_t dpitch, const void* src, size_t spitch, size_t width, size_t height, cudaMemcpyKind kind, cudaStream_t stream = 0 ) {
+    if (!reserving_graph) {
+        return cudaMemcpy2DAsync(dst, dpitch, src, spitch, width, height, kind, stream);
+    } else {
+        return cudaSuccess;
+    }
+}
+
249
250
251
252
253
254
255
256
+static cudaError_t cudaMemsetAsyncReserve ( void* devPtr, int value, size_t count, cudaStream_t stream = 0 ) {
+    if (!reserving_graph) {
+        return cudaMemsetAsync(devPtr, value, count, stream);
+    } else {
+        return cudaSuccess;
+    }
+}
+
257
258
259
260
+#undef cudaMemcpyAsync
+#define cudaMemcpyAsync cudaMemcpyAsyncReserve
+#undef cudaMemcpy2DAsync
+#define cudaMemcpy2DAsync cudaMemcpy2DAsyncReserve
261
262
+#undef cudaMemsetAsync
+#define cudaMemsetAsync cudaMemsetAsyncReserve
263
264
265
266
+
 #define STRINGIZE_IMPL(...) #__VA_ARGS__
 #define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
 
267
@@ -856,6 +891,9 @@ struct ggml_cuda_pool {
268
269
270
271
272
273
274
275
276
 
     virtual void * alloc(size_t size, size_t * actual_size) = 0;
     virtual void free(void * ptr, size_t size) = 0;
+
+    virtual bool alloc_memory() = 0;
+    virtual size_t alloc_size() = 0;
 };
 
 template<typename T>
Daniel Hiltgen's avatar
Daniel Hiltgen committed
277
@@ -992,11 +1030,11 @@ struct ggml_backend_cuda_context {
278
279
280
281
282
283
284
285
286
287
288
289
290
     // pool
     std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
 
-    static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
+    static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device, bool alloc);
 
     ggml_cuda_pool & pool(int device) {
         if (pools[device] == nullptr) {
-            pools[device] = new_pool_for_device(device);
+            pools[device] = new_pool_for_device(device, true);
         }
         return *pools[device];
     }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
291
@@ -1004,4 +1042,20 @@ struct ggml_backend_cuda_context {
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
     ggml_cuda_pool & pool() {
         return pool(device);
     }
+
+    void pool_set_alloc(bool alloc) {
+        GGML_ASSERT(pools[device] == nullptr || pools[device]->alloc_memory() == alloc);
+
+        if (pools[device] == nullptr) {
+            pools[device] = new_pool_for_device(device, alloc);
+        }
+    }
+
+    size_t pool_get_alloc_size() {
+        if (pools[device] == nullptr) {
+            return 0;
+        }
+
+        return pools[device]->alloc_size();
+    }
 };
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
Daniel Hiltgen's avatar
Daniel Hiltgen committed
313
index 02d413467..f79e5d65c 100644
314
315
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
Daniel Hiltgen's avatar
Daniel Hiltgen committed
316
@@ -359,6 +359,8 @@ const ggml_cuda_device_info & ggml_cuda_info() {
317
318
319
320
321
322
323
324
 
 // #define DEBUG_CUDA_MALLOC
 
+#define CUDA_ALIGNMENT 128
+
 // buffer pool for cuda (legacy)
 struct ggml_cuda_pool_leg : public ggml_cuda_pool {
     static const int MAX_BUFFERS = 256;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
325
@@ -371,9 +373,12 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
326
327
328
329
330
331
332
333
334
335
336
337
338
339
 
     ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
     size_t pool_size = 0;
+    bool allocate = true;
+    size_t last_alloc = 0;
 
-    explicit ggml_cuda_pool_leg(int device) :
-        device(device) {
+    explicit ggml_cuda_pool_leg(int device, bool alloc) :
+        device(device),
+        allocate(alloc) {
     }
 
     ~ggml_cuda_pool_leg() {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
340
@@ -381,7 +386,9 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
341
342
343
344
345
346
347
348
349
350
         for (int i = 0; i < MAX_BUFFERS; ++i) {
             ggml_cuda_buffer & b = buffer_pool[i];
             if (b.ptr != nullptr) {
-                CUDA_CHECK(cudaFree(b.ptr));
+                if (allocate) {
+                    CUDA_CHECK(cudaFree(b.ptr));
+                }
                 pool_size -= b.size;
             }
         }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
351
@@ -429,8 +436,15 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
         void * ptr;
         size_t look_ahead_size = (size_t) (1.05 * size);
         look_ahead_size = 256 * ((look_ahead_size + 255)/256);
-        ggml_cuda_set_device(device);
-        CUDA_CHECK(ggml_cuda_device_malloc(&ptr, look_ahead_size, device));
+        if (allocate) {
+            ggml_cuda_set_device(device);
+            if (ggml_cuda_device_malloc(&ptr, look_ahead_size, device) != cudaSuccess) {
+                    last_alloc = look_ahead_size;
+                    throw std::bad_alloc();
+            }
+        } else {
+            ptr = (void *)CUDA_ALIGNMENT;
+        }
         *actual_size = look_ahead_size;
         pool_size += look_ahead_size;
 #ifdef DEBUG_CUDA_MALLOC
Daniel Hiltgen's avatar
Daniel Hiltgen committed
369
@@ -450,10 +464,20 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
             }
         }
         GGML_LOG_DEBUG(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n");
-        ggml_cuda_set_device(device);
-        CUDA_CHECK(cudaFree(ptr));
+        if (allocate) {
+            ggml_cuda_set_device(device);
+            CUDA_CHECK(cudaFree(ptr));
+        }
         pool_size -= size;
     }
+
+    bool alloc_memory() override {
+        return allocate;
+    }
+
+    size_t alloc_size() override {
+        return pool_size + last_alloc;
+    }
 };
 
 // pool with virtual memory
Daniel Hiltgen's avatar
Daniel Hiltgen committed
392
@@ -465,18 +489,24 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
     CUdeviceptr pool_addr = 0;
     size_t pool_used = 0;
     size_t pool_size = 0;
+    bool allocate = true;
+    size_t last_alloc = 0;
     size_t granularity;
 #if defined(GGML_USE_HIP)
     std::vector<std::pair<CUdeviceptr, size_t>> mappings;
 #endif
 
-    explicit ggml_cuda_pool_vmm(int device) :
+    explicit ggml_cuda_pool_vmm(int device, bool alloc) :
         device(device),
-        granularity(ggml_cuda_info().devices[device].vmm_granularity) {
+        granularity(ggml_cuda_info().devices[device].vmm_granularity),
+        allocate(alloc) {
+        if (!allocate) {
+            pool_addr = (CUdeviceptr)CUDA_ALIGNMENT;
+        }
     }
 
     ~ggml_cuda_pool_vmm() {
-        if (pool_addr != 0) {
+        if (pool_addr != 0 && allocate) {
 #if defined(GGML_USE_HIP)
             // Workaround for https://github.com/ROCm/ROCR-Runtime/issues/285
             for (std::pair<CUdeviceptr, size_t> & mapping : mappings) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
420
@@ -503,35 +533,49 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
 
             GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
 
-            // allocate more physical memory
-            CUmemAllocationProp prop = {};
-            prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
-            prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
-            prop.location.id = device;
-            CUmemGenericAllocationHandle handle;
-            CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
-
-            // reserve virtual address space (if not already reserved)
-            if (pool_addr == 0) {
-                CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
-            }
+            if (allocate) {
+                // allocate more physical memory
+                CUmemAllocationProp prop = {};
+                prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
+                prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
+                prop.location.id = device;
+                CUmemGenericAllocationHandle handle;
+                if (cuMemCreate(&handle, reserve_size, &prop, 0) != CUDA_SUCCESS) {
+                    last_alloc = reserve_size;
+                    throw std::bad_alloc();
+                }
 
-            // map at the end of the pool
-            CUdeviceptr start_ptr = (CUdeviceptr)((char *)(pool_addr) + pool_size);
-            CU_CHECK(cuMemMap(start_ptr, reserve_size, 0, handle, 0));
-#if defined(GGML_USE_HIP)
-            mappings.push_back({start_ptr, reserve_size});
-#endif
+                // reserve virtual address space (if not already reserved)
+                if (pool_addr == 0) {
+                    CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
+                }
 
-            // the memory allocation handle is no longer needed after mapping
-            CU_CHECK(cuMemRelease(handle));
+                // map at the end of the pool
+                CUdeviceptr start_ptr = (CUdeviceptr)((char *)(pool_addr) + pool_size);
+                if (cuMemMap(start_ptr, reserve_size, 0, handle, 0) != CUDA_SUCCESS) {
+                    last_alloc = reserve_size;
+                    CU_CHECK(cuMemRelease(handle));
+                    throw std::bad_alloc();
+                }
+
+                // the memory allocation handle is no longer needed after mapping
+                CU_CHECK(cuMemRelease(handle));
+
+                // set access
+                CUmemAccessDesc access = {};
+                access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
+                access.location.id = device;
+                access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
+                if (cuMemSetAccess((CUdeviceptr)((char *)(pool_addr) + pool_size), reserve_size, &access, 1) != CUDA_SUCCESS) {
+                    CU_CHECK(cuMemUnmap(start_ptr, reserve_size));
+                    last_alloc = reserve_size;
+                    throw std::bad_alloc();
+                }
 
-            // set access
-            CUmemAccessDesc access = {};
-            access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
-            access.location.id = device;
-            access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
-            CU_CHECK(cuMemSetAccess((CUdeviceptr)((char *)(pool_addr) + pool_size), reserve_size, &access, 1));
+    #if defined(GGML_USE_HIP)
+                mappings.push_back({start_ptr, reserve_size});
+    #endif
+            }
 
             // add to the pool
             pool_size += reserve_size;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
496
@@ -564,16 +608,24 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
         // all deallocations must be in reverse order of the allocations
         GGML_ASSERT(ptr == (void *) ((char *)(pool_addr) + pool_used));
     }
+
+    bool alloc_memory() override {
+        return allocate;
+    }
+
+    size_t alloc_size() override {
+        return pool_size + last_alloc;
+    }
 };
 #endif // defined(GGML_USE_VMM)
 
-std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
+std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device, bool alloc) {
 #if defined(GGML_USE_VMM)
     if (ggml_cuda_info().devices[device].vmm) {
-        return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
+        return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device, alloc));
     }
 #endif // defined(GGML_USE_VMM)
-    return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
+    return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device, alloc));
 }
 
 // destroying a cuBLAS handle while a graph is being captured in a different thread can result in a CUDA error
Daniel Hiltgen's avatar
Daniel Hiltgen committed
524
@@ -757,11 +809,20 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
 }
 
 static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
-    return 128;
+    return CUDA_ALIGNMENT;
 
     GGML_UNUSED(buft);
 }
 
+static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_noalloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
+    ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
+
+    void * dev_ptr = (void *)ggml_backend_cuda_buffer_type_get_alignment(buft);
+    ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
+
+    return ggml_backend_buffer_init(buft, {}, ctx, size);
+}
+
 static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
     size_t size = ggml_nbytes(tensor);
     int64_t ne0 = tensor->ne[0];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
546
@@ -785,6 +846,7 @@ static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface
547
548
549
550
551
552
553
     /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
     /* .get_alloc_size   = */ ggml_backend_cuda_buffer_type_get_alloc_size,
     /* .is_host          = */ NULL,
+    /* .noalloc_buffer   = */ ggml_backend_cuda_buffer_type_noalloc_buffer,
 };
 
 ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
554
@@ -2986,6 +3048,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
555
556
557
558
559
560
561
 
 static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
     bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
+
     // flag used to determine whether it is an integrated_gpu
     const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
 
Daniel Hiltgen's avatar
Daniel Hiltgen committed
562
@@ -3001,6 +3064,11 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
563
564
565
566
567
568
569
570
571
572
                     continue;
                 }
 
+                // When reserving, we are forcing CUDA graphs but this operation is not graph-safe so we need to skip it
+                if (reserving_graph && node->op == GGML_OP_MUL_MAT_ID && node->ne[2] != 1) {
+                    continue;
+                }
+
                 static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
                 if (!disable_fusion) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
573
 
Daniel Hiltgen's avatar
Daniel Hiltgen committed
574
@@ -3140,6 +3208,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
575
 
576
 static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph, int batch_size) {
577
578
579
580
581
     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+    cuda_ctx->pool_set_alloc(true);
 
     ggml_cuda_set_device(cuda_ctx->device);
 
Daniel Hiltgen's avatar
Daniel Hiltgen committed
582
@@ -3215,6 +3284,71 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
     return GGML_STATUS_SUCCESS;
 }
 
+// This is used to skip operations that are not graph safe during the reservation process.
+bool reserving_graph = false;
+
+static enum ggml_status ggml_backend_cuda_graph_reserve(ggml_backend_t backend, ggml_cgraph * cgraph, bool alloc) {
+    ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
+    cuda_ctx->pool_set_alloc(alloc);
+
+    #ifdef USE_CUDA_GRAPH
+    if (cuda_ctx->cuda_graph == nullptr) {
+        cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
+    }
+    #endif
+
+    ggml_cuda_set_device(cuda_ctx->device);
+
+    {
+        std::lock_guard<std::mutex> lock(ggml_cuda_lock);
+        ggml_cuda_lock_counter.fetch_add(1, std::memory_order_relaxed);
+    }
+
+    reserving_graph = true;
+
+    // Create CuBLAS handles early to avoid synchronous allocations during graph capture.
+    cuda_ctx->cublas_handle();
+
+    CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
+
+    enum ggml_status result = GGML_STATUS_SUCCESS;
+
+    try {
+        bool use_cuda_graph = false;
+        bool cuda_graph_update_required = false;
+        bool graph_evaluated_or_captured = false;
+
+        evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required);
+    } catch (const std::exception &e) {
+        result = GGML_STATUS_FAILED;
+    }
+
+    cudaGraph_t graph;
+    CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &graph));
+    CUDA_CHECK(cudaGraphDestroy(graph));
+
+    reserving_graph = false;
+
+    {
+        std::lock_guard<std::mutex> lock(ggml_cuda_lock);
+        if (ggml_cuda_lock_counter.fetch_sub(1, std::memory_order_relaxed) == 1) {
+            ggml_cuda_lock_cv.notify_all();
+        }
+    }
+
+    return result;
+}
+
+static size_t ggml_backend_cuda_buffer_size(ggml_backend_t backend) {
+    ggml_backend_cuda_context * ctx = (ggml_backend_cuda_context *)backend->context;
+    return ctx->pool_get_alloc_size();
+}
+
+static void ggml_backend_cuda_reset(ggml_backend_t backend) {
+    ggml_backend_cuda_context * ctx = (ggml_backend_cuda_context *)backend->context;
+    ctx->pools[ctx->device] = NULL;
+}
+
 static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
     ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
 
Daniel Hiltgen's avatar
Daniel Hiltgen committed
654
@@ -3255,6 +3389,9 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
655
656
     /* .event_record            = */ ggml_backend_cuda_event_record,
     /* .event_wait              = */ ggml_backend_cuda_event_wait,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
657
     /* .graph_optimize          = */ NULL,
658
659
660
661
662
663
+    /* .graph_reserve           = */ ggml_backend_cuda_graph_reserve,
+    /* .buffer_size             = */ ggml_backend_cuda_buffer_size,
+    /* .reset                   = */ ggml_backend_cuda_reset,
 };
 
 static ggml_guid_t ggml_backend_cuda_guid() {