convert_gptoss.go 4.87 KB
Newer Older
Michael Yang's avatar
gpt-oss  
Michael Yang committed
1
2
3
package convert

import (
Michael Yang's avatar
Michael Yang committed
4
	"bytes"
Michael Yang's avatar
gpt-oss  
Michael Yang committed
5
	"cmp"
Michael Yang's avatar
Michael Yang committed
6
7
8
9
	"encoding/binary"
	"io"
	"slices"
	"strings"
Michael Yang's avatar
gpt-oss  
Michael Yang committed
10
11

	"github.com/ollama/ollama/fs/ggml"
Michael Yang's avatar
Michael Yang committed
12
13
	"github.com/pdevine/tensor"
	"github.com/pdevine/tensor/native"
Michael Yang's avatar
gpt-oss  
Michael Yang committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
)

type gptossModel struct {
	ModelParameters
	HiddenLayers         uint32  `json:"num_hidden_layers"`
	HiddenSize           uint32  `json:"hidden_size"`
	IntermediateSize     uint32  `json:"intermediate_size"`
	AttentionHeads       uint32  `json:"num_attention_heads"`
	KeyValueHeads        uint32  `json:"num_key_value_heads"`
	HeadDim              uint32  `json:"head_dim"`
	Experts              uint32  `json:"num_experts"`
	ExpertsPerToken      uint32  `json:"experts_per_token"`
	RMSNormEpsilon       float32 `json:"rms_norm_eps"`
	InitialContextLength uint32  `json:"initial_context_length"`
	RopeTheta            float32 `json:"rope_theta"`
	RopeScalingFactor    float32 `json:"rope_scaling_factor"`
	SlidingWindow        uint32  `json:"sliding_window"`
}

var _ ModelConverter = (*gptossModel)(nil)

func (m *gptossModel) KV(t *Tokenizer) ggml.KV {
	kv := m.ModelParameters.KV(t)
	kv["general.architecture"] = "gptoss"
	kv["general.file_type"] = uint32(4)
	kv["gptoss.context_length"] = uint32(m.RopeScalingFactor * float32(m.InitialContextLength))
	kv["gptoss.block_count"] = m.HiddenLayers
	kv["gptoss.embedding_length"] = m.HiddenSize
	kv["gptoss.feed_forward_length"] = m.IntermediateSize
	kv["gptoss.expert_count"] = m.Experts
	kv["gptoss.expert_used_count"] = m.ExpertsPerToken
	kv["gptoss.attention.head_count"] = m.AttentionHeads
	kv["gptoss.attention.head_count_kv"] = m.KeyValueHeads
	kv["gptoss.attention.key_length"] = m.HeadDim
	kv["gptoss.attention.value_length"] = m.HeadDim
	kv["gptoss.attention.layer_norm_rms_epsilon"] = cmp.Or(m.RMSNormEpsilon, 1e-5)
	kv["gptoss.attention.sliding_window"] = m.SlidingWindow
	kv["gptoss.rope.freq_base"] = m.RopeTheta
	kv["gptoss.rope.scaling.factor"] = m.RopeScalingFactor
	kv["gptoss.rope.scaling.original_context_length"] = m.InitialContextLength
	kv["tokenizer.ggml.bos_token_id"] = uint32(199998) // <|startoftext|>
	kv["tokenizer.ggml.add_bos_token"] = false
	kv["tokenizer.ggml.eos_token_id"] = uint32(199999) // <|endoftext|>
	kv["tokenizer.ggml.eos_token_ids"] = []int32{
		199999, /* <|endoftext|> */
		200002, /* <|return|> */
		200012, /* <|call|> */
	}
	kv["tokenizer.ggml.add_eos_token"] = false
	return kv
}

func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
	var out []*ggml.Tensor
Michael Yang's avatar
Michael Yang committed
68
	mxfp4s := make(map[string]*mxfp4)
Michael Yang's avatar
gpt-oss  
Michael Yang committed
69
	for _, t := range ts {
Michael Yang's avatar
Michael Yang committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
		if strings.HasSuffix(t.Name(), ".blocks") || strings.HasSuffix(t.Name(), ".scales") {
			dot := strings.LastIndex(t.Name(), ".")
			name, suffix := t.Name()[:dot], t.Name()[dot+1:]
			if _, ok := mxfp4s[name]; !ok {
				mxfp4s[name] = &mxfp4{}
			}

			switch suffix {
			case "blocks":
				mxfp4s[name].blocks = t
			case "scales":
				mxfp4s[name].scales = t
			}

		} else {
			out = append(out, &ggml.Tensor{
				Name:     t.Name(),
				Kind:     t.Kind(),
				Shape:    t.Shape(),
				WriterTo: t,
			})
		}
	}

	for name, mxfp4 := range mxfp4s {
		dims := mxfp4.blocks.Shape()
Michael Yang's avatar
gpt-oss  
Michael Yang committed
96
		out = append(out, &ggml.Tensor{
Michael Yang's avatar
Michael Yang committed
97
98
99
100
			Name:     name,
			Kind:     uint32(ggml.TensorTypeMXFP4),
			Shape:    []uint64{dims[0], dims[1], dims[2] * dims[3] * 2},
			WriterTo: mxfp4,
Michael Yang's avatar
gpt-oss  
Michael Yang committed
101
102
103
104
105
106
107
108
		})
	}

	return out
}

func (m *gptossModel) Replacements() []string {
	return []string{
Michael Yang's avatar
Michael Yang committed
109
110
111
112
		// noop replacements so other replacements will not be applied
		".blocks", ".blocks",
		".scales", ".scales",
		// real replacements
Michael Yang's avatar
gpt-oss  
Michael Yang committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
		"block", "blk",
		"attn.norm", "attn_norm",
		"attn.qkv", "attn_qkv",
		"attn.sinks", "attn_sinks",
		"attn.out", "attn_out",
		"mlp.norm", "ffn_norm",
		"mlp.gate", "ffn_gate_inp",
		"mlp.mlp1_", "ffn_gate_up_exps.",
		"mlp.mlp2_", "ffn_down_exps.",
		"embedding", "token_embd",
		"norm", "output_norm",
		"unembedding", "output",
		"scale", "weight",
	}
}
Michael Yang's avatar
Michael Yang committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

type mxfp4 struct {
	blocks, scales Tensor
}

func (m *mxfp4) WriteTo(w io.Writer) (int64, error) {
	var b bytes.Buffer
	if _, err := m.blocks.WriteTo(&b); err != nil {
		return 0, err
	}

	blocksDims := make([]int, len(m.blocks.Shape()))
	for i, d := range m.blocks.Shape() {
		blocksDims[i] = int(d)
	}

	var blocks tensor.Tensor = tensor.New(tensor.WithShape(blocksDims...), tensor.WithBacking(b.Bytes()))

	var s bytes.Buffer
	if _, err := m.scales.WriteTo(&s); err != nil {
		return 0, err
	}

	scalesDims := slices.Repeat([]int{1}, len(m.blocks.Shape()))
	for i, d := range m.scales.Shape() {
		scalesDims[i] = int(d)
	}

	var scales tensor.Tensor = tensor.New(tensor.WithShape(scalesDims...), tensor.WithBacking(s.Bytes()))

	out, err := tensor.Concat(3, scales, blocks)
	if err != nil {
		return 0, err
	}

	out = tensor.Materialize(out)

	if err := out.Reshape(out.Shape().TotalSize()); err != nil {
		return 0, err
	}

	u8s, err := native.VectorU8(out.(*tensor.Dense))
	if err != nil {
		return 0, err
	}

	if err := binary.Write(w, binary.LittleEndian, u8s); err != nil {
		return 0, err
	}

	return 0, nil
}