0010-add-mllama-support.patch 33.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Thu, 17 Oct 2024 15:18:22 -0700
Subject: [PATCH] add mllama support

mllama adds cross-attention layers to the standard llama architecture
it also requires a way to input a new tensor: cross_attention_state
once per generation

cross-attention layers don't change and so they are cached in the
kv cache once per run

remaining is to implement the cross attention mask
---
15
16
17
18
 examples/llava/llava.cpp |   2 +-
 include/llama.h          |   5 +
 src/llama.cpp            | 447 +++++++++++++++++++++++++++++++++++++--
 3 files changed, 436 insertions(+), 18 deletions(-)
19

20
21
22
23
24
25
26
27
28
29
30
31
32
diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp
index 8558c6bd..37b2f2e2 100644
--- a/examples/llava/llava.cpp
+++ b/examples/llava/llava.cpp
@@ -409,7 +409,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
         if (n_eval > n_batch) {
             n_eval = n_batch;
         }
-        llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
+        llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), n_embd, nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
         if (llama_decode(ctx_llama, batch)) {
             LOG_ERR("%s : failed to eval\n", __func__);
             return false;
33
diff --git a/include/llama.h b/include/llama.h
34
index 7cae1bbe..aca09310 100644
35
36
--- a/include/llama.h
+++ b/include/llama.h
37
38
39
40
41
42
43
44
45
@@ -240,6 +240,7 @@ extern "C" {
 
         llama_token  *  token;
         float        *  embd;
+        int32_t         n_embd;
         llama_pos    *  pos;
         int32_t      *  n_seq_id;
         llama_seq_id ** seq_id;
@@ -423,6 +424,10 @@ extern "C" {
46
47
48
49
50
                      struct llama_model * model,
             struct llama_context_params   params);
 
+    // TODO (jmorganca): this should most likely be passed in as part of a batch
+    // and not set on the context for all batches.
51
+    LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
52
53
54
55
56
+
     // Frees all allocated memory
     LLAMA_API void llama_free(struct llama_context * ctx);
 
diff --git a/src/llama.cpp b/src/llama.cpp
57
index 83b80b59..35748488 100644
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -169,6 +169,7 @@ static std::string format(const char * fmt, ...) {
 
 enum llm_arch {
     LLM_ARCH_LLAMA,
+    LLM_ARCH_MLLAMA,
     LLM_ARCH_FALCON,
     LLM_ARCH_BAICHUAN,
     LLM_ARCH_GROK,
@@ -223,6 +224,7 @@ enum llm_arch {
 
 static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_LLAMA,           "llama"        },
+    { LLM_ARCH_MLLAMA,          "mllama"       },
     { LLM_ARCH_FALCON,          "falcon"       },
     { LLM_ARCH_GROK,            "grok"         },
     { LLM_ARCH_GPT2,            "gpt2"         },
@@ -330,6 +332,7 @@ enum llm_kv {
     LLM_KV_ATTENTION_SLIDING_WINDOW,
     LLM_KV_ATTENTION_SCALE,
     LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
+    LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
 
     LLM_KV_ROPE_DIMENSION_COUNT,
     LLM_KV_ROPE_FREQ_BASE,
@@ -439,6 +442,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
     { LLM_KV_ATTENTION_SLIDING_WINDOW,         "%s.attention.sliding_window"           },
     { LLM_KV_ATTENTION_SCALE,                  "%s.attention.scale"                    },
     { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,  "%s.attention.block_skip_connection.%d" },
+    { LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers"   },
 
     { LLM_KV_ROPE_DIMENSION_COUNT,          "%s.rope.dimension_count"                 },
     { LLM_KV_ROPE_FREQ_BASE,                "%s.rope.freq_base"                       },
@@ -613,6 +617,14 @@ enum llm_tensor {
     LLM_TENSOR_CLS,
     LLM_TENSOR_CLS_OUT,
     LLM_TENSOR_BSKCN_TV,
+    LLM_TENSOR_CROSS_ATTN_K_NORM,
+    LLM_TENSOR_CROSS_ATTN_K_PROJ,
+    LLM_TENSOR_CROSS_ATTN_O_PROJ,
+    LLM_TENSOR_CROSS_ATTN_Q_NORM,
+    LLM_TENSOR_CROSS_ATTN_Q_PROJ,
+    LLM_TENSOR_CROSS_ATTN_V_PROJ,
+    LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
+    LLM_TENSOR_CROSS_ATTN_MLP_GATE,
 };
 
 static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
@@ -642,6 +654,40 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
             { LLM_TENSOR_FFN_UP_EXPS,     "blk.%d.ffn_up_exps" },
         },
     },
+    {
+        LLM_ARCH_MLLAMA,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
+            { LLM_TENSOR_FFN_GATE_INP,    "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_GATE_EXP,    "blk.%d.ffn_gate.%d" },
+            { LLM_TENSOR_FFN_DOWN_EXP,    "blk.%d.ffn_down.%d" },
+            { LLM_TENSOR_FFN_UP_EXP,      "blk.%d.ffn_up.%d" },
+            { LLM_TENSOR_FFN_GATE_EXPS,   "blk.%d.ffn_gate_exps" },
+            { LLM_TENSOR_FFN_DOWN_EXPS,   "blk.%d.ffn_down_exps" },
+            { LLM_TENSOR_FFN_UP_EXPS,     "blk.%d.ffn_up_exps" },
+            { LLM_TENSOR_CROSS_ATTN_K_NORM,    "blk.%d.cross_attn_k_norm" },
+            { LLM_TENSOR_CROSS_ATTN_K_PROJ,    "blk.%d.cross_attn_k_proj" },
+            { LLM_TENSOR_CROSS_ATTN_O_PROJ,    "blk.%d.cross_attn_o_proj" },
+            { LLM_TENSOR_CROSS_ATTN_Q_NORM,    "blk.%d.cross_attn_q_norm" },
+            { LLM_TENSOR_CROSS_ATTN_Q_PROJ,    "blk.%d.cross_attn_q_proj" },
+            { LLM_TENSOR_CROSS_ATTN_V_PROJ,    "blk.%d.cross_attn_v_proj" },
+            { LLM_TENSOR_CROSS_ATTN_ATTN_GATE, "blk.%d.cross_attn_attn_gate" },
+            { LLM_TENSOR_CROSS_ATTN_MLP_GATE,  "blk.%d.cross_attn_mlp_gate" },
+        },
+    },
     {
         LLM_ARCH_BAICHUAN,
         {
@@ -2390,6 +2436,7 @@ enum e_model {
     MODEL_40B,
     MODEL_65B,
     MODEL_70B,
+    MODEL_90B,
     MODEL_236B,
     MODEL_314B,
     MODEL_SMALL,
@@ -2434,6 +2481,7 @@ struct llama_hparams {
     std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
 
     std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
+    std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
 
     uint32_t n_layer_dense_lead = 0;
     uint32_t n_lora_q = 0;
@@ -2502,10 +2550,11 @@ struct llama_hparams {
         if (this->n_expert      != other.n_expert)      return true;
         if (this->n_expert_used != other.n_expert_used) return true;
 
-        if (this->n_head_arr    != other.n_head_arr)    return true;
-        if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
-        if (this->n_ff_arr      != other.n_ff_arr)      return true;
-        if (this->n_bskcn_arr   != other.n_bskcn_arr)   return true;
+        if (this->n_head_arr        != other.n_head_arr)        return true;
+        if (this->n_head_kv_arr     != other.n_head_kv_arr)     return true;
+        if (this->n_ff_arr          != other.n_ff_arr)          return true;
+        if (this->n_bskcn_arr       != other.n_bskcn_arr)       return true;
+        if (this->cross_attn_layers != other.cross_attn_layers) return true;
 
         if (this->n_rel_attn_bkts    != other.n_rel_attn_bkts)    return true;
         if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
@@ -2623,6 +2672,10 @@ struct llama_hparams {
 
         GGML_ABORT("fatal error");
     }
+
185
+    bool cross_attention_layers(uint32_t il) const {
186
187
188
189
190
+        return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
+    }
 };
 
 static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
191
192
193
194
195
196
197
198
199
200
201
@@ -2652,6 +2705,9 @@ struct llama_cparams {
     bool offload_kqv;
     bool flash_attn;
     bool no_perf;
+    // TODO (jmorganca): this should most likely be passed in as part of a batch
+    // and not set on the context for all batches.
+    bool cross_attn = false;
 
     enum llama_pooling_type pooling_type;
 
@@ -2806,6 +2862,16 @@ struct llama_layer {
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
     struct ggml_tensor * ffn_down_scale;
 
     struct ggml_tensor * bskcn_tv;
+
+    // cross attention
+    struct ggml_tensor * cross_attn_k_norm;
+    struct ggml_tensor * cross_attn_k_proj;
+    struct ggml_tensor * cross_attn_o_proj;
+    struct ggml_tensor * cross_attn_q_norm;
+    struct ggml_tensor * cross_attn_q_proj;
+    struct ggml_tensor * cross_attn_v_proj;
+    struct ggml_tensor * cross_attn_attn_gate;
+    struct ggml_tensor * cross_attn_mlp_gate;
 };
 
 // very similar to llama_batch,
218
@@ -3452,6 +3518,8 @@ struct llama_context {
219
220
221
222
223
224
225
226
     struct ggml_tensor * inp_pos_bucket;    // I32 [n_batch|n_kv, n_batch]
     struct ggml_tensor * inp_embd_enc;      // F32 [n_embd, n_outputs_enc]
     struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
+
+    struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
 };
 
 struct llama_lora_weight {
227
@@ -3686,6 +3754,18 @@ static bool llama_kv_cache_init(
228
229
230
231
     cache.v_l.reserve(n_layer);
 
     for (int i = 0; i < (int) n_layer; i++) {
+        // for cross attention layers
232
+        if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
233
234
235
236
237
238
239
240
241
242
243
244
245
+            struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
+            ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
+            ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
+            ggml_format_name(k, "cache_k_l%d", i);
+            ggml_format_name(v, "cache_v_l%d", i);
+            cache.k_l.push_back(k);
+            cache.v_l.push_back(v);
+            continue;
+        }
+
         const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
         const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
 
246
@@ -5460,12 +5540,14 @@ static void llm_load_hparams(
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
     }
 
     // zero-out the per-layer hparams
-    std::fill(hparams.n_head_arr.begin(),    hparams.n_head_arr.end(),    0);
-    std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
-    std::fill(hparams.n_ff_arr.begin(),      hparams.n_ff_arr.end(),      0);
+    std::fill(hparams.n_head_arr.begin(),             hparams.n_head_arr.end(),        0);
+    std::fill(hparams.n_head_kv_arr.begin(),          hparams.n_head_kv_arr.end(),     0);
+    std::fill(hparams.n_ff_arr.begin(),               hparams.n_ff_arr.end(),          0);
+    std::fill(hparams.cross_attn_layers.begin(),      hparams.cross_attn_layers.end(), -1);
 
-    ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH,  hparams.n_ff_arr,   hparams.n_layer);
-    ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
+    ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH,       hparams.n_ff_arr,          hparams.n_layer);
+    ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT,      hparams.n_head_arr,        hparams.n_layer);
+    ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
 
     // n_head_kv is optional, default to n_head
     hparams.n_head_kv_arr = hparams.n_head_arr;
266
@@ -5514,7 +5596,7 @@ static void llm_load_hparams(
267
268
269
270
271
272
273
274
 
         ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
 
-        if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
+        if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_MLLAMA || model.arch == LLM_ARCH_FALCON) {
             if (hparams.n_rot != hparams.n_embd_head_k) {
                 throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
             }
275
@@ -5554,6 +5636,16 @@ static void llm_load_hparams(
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
                     }
                 }
             } break;
+        case LLM_ARCH_MLLAMA:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+                switch (hparams.n_layer) {
+                    case 40: model.type = e_model::MODEL_11B; break;
+                    case 100: model.type = e_model::MODEL_90B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_MINICPM:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
292
@@ -7249,6 +7341,55 @@ static bool llm_load_tensors(
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
                         layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
                     }
                 } break;
+            case LLM_ARCH_MLLAMA:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+
+                        // if output is NULL, init from the input tok embed
+                        if (model.output == NULL) {
+                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
+                        }
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
317
+                        if (hparams.cross_attention_layers(i)) {
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
+                            layer.cross_attn_k_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_NORM,   "weight", i), {128});
+                            layer.cross_attn_k_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_PROJ,   "weight", i), {n_embd, 1024});
+                            layer.cross_attn_o_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_O_PROJ,   "weight", i), {n_embd, n_embd});
+                            layer.cross_attn_q_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_NORM, "weight", i), {128});
+                            layer.cross_attn_q_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_PROJ, "weight", i), {n_embd, n_embd});
+                            layer.cross_attn_v_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_V_PROJ, "weight", i), {n_embd, 1024});
+                            layer.cross_attn_attn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_ATTN_GATE, i), {1});
+                            layer.cross_attn_mlp_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_MLP_GATE, i), {1});
+                            layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                            layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
+                            layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                            layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                            layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                        } else {
+                            layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+                            layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head});
+                            layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
+                            layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
+                            layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
+                            layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+                            layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+                            layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                            layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                            layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                        }
+                    }
+                } break;
             case LLM_ARCH_GROK:
                 {
                     if (n_expert == 0) {
348
@@ -9093,7 +9234,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
349
350
351
352
353
354
355
356
 
         if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
             model.hparams.n_vocab != model.vocab.id_to_token.size()) {
-            throw std::runtime_error("vocab size mismatch");
+            LLAMA_LOG_WARN("%s: vocab mismatch %u !- %zu ...\n", __func__, model.hparams.n_vocab, model.vocab.id_to_token.size());
         }
 
         if (params.vocab_only) {
357
@@ -9193,6 +9334,21 @@ static struct ggml_tensor * llm_build_inp_embd(
358
359
360
361
362
363
364
365
366
367
     return inpL;
 }
 
+static struct ggml_tensor * llm_build_inp_cross_attn_state(
+        struct ggml_context * ctx,
+       struct llama_context & lctx,
+        const llama_hparams & hparams,
+         const llm_build_cb & cb) {
+    const int64_t n_embd = hparams.n_embd;
+
368
369
370
371
+    struct ggml_tensor * inpCAS = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
+    cb(inpCAS, "inp_cross_attn_state", -1);
+    ggml_set_input(inpCAS);
+    lctx.inp_cross_attn_state = inpCAS;
372
373
374
375
376
377
378
+
+    return inpCAS;
+}
+
 static void llm_build_kv_store(
         struct ggml_context * ctx,
         const llama_hparams & hparams,
379
@@ -10167,6 +10323,7 @@ struct llm_build_context {
380
381
382
383
384
385
386
         lctx.inp_pos_bucket    = nullptr;
         lctx.inp_embd_enc      = nullptr;
         lctx.inp_KQ_mask_cross = nullptr;
+        lctx.inp_cross_attn_state = nullptr;
     }
 
     void free() {
387
@@ -10754,6 +10911,239 @@ struct llm_build_context {
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
                 LLM_NORM_RMS, cb, -1);
         cb(cur, "result_norm", -1);
 
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
+
+    struct ggml_cgraph * build_mllama() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+        struct ggml_tensor * inpCAS;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+        inpCAS = llm_build_inp_cross_attn_state(ctx0, lctx, hparams, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
431
432
+            if (hparams.cross_attention_layers(il)) {
+                if (!batch.embd && !cparams.cross_attn) {
433
434
435
436
437
438
439
440
441
442
+                    continue;
+                }
+
+                // cross attention layer
+                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_q_proj, cur);
+                cb(Qcur, "Qcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
+                cb(Qcur, "Qcur", il);
+
443
+                Qcur = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 0, 2, 1, 3));
444
445
446
447
448
+                cb(Qcur, "Qcur", il);
+
+                Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
+                cb(Qcur, "Qcur", il);
+
449
450
+                struct ggml_tensor * Kcur, * Vcur;
+                if (batch.embd) {
451
452
453
454
455
456
+                    Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
+                    cb(Kcur, "Kcur", il);
+
+                    Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
+                    cb(Kcur, "Kcur", il);
+
457
+                    Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
+                    cb(Kcur, "Kcur", il);
+
+                    Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
+                    cb(Kcur, "Kcur", il);
+
+                    ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self.k_l[il]));
+
+                    Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
+                    cb(Vcur, "Vcur", il);
+
+                    Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, 6404);
+                    cb(Vcur, "Vcur", il);
+
+                    Vcur = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
+                    cb(Vcur, "Vcur", il);
+
+                    ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self.v_l[il]));
+                } else {
476
477
478
+                    Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
+                    cb(Kcur, "Kcur (view)", il);
+
479
480
481
482
483
484
485
486
+                    Vcur = ggml_view_tensor(ctx0, kv_self.v_l[il]);
+                    cb(Vcur, "Vcur (view)", il);
+                }
+
+                struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
+                cb(kq, "kq", il);
+
+                // TODO: apply causal masks
487
+                struct ggml_tensor * kq_soft_max = ggml_soft_max_ext(ctx0, kq, nullptr, 1.f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
+                cb(kq_soft_max, "kq_soft_max", il);
+
+                Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
+                cb(Vcur, "Vcur", il);
+
+                struct ggml_tensor * kqv = ggml_mul_mat(ctx0, Vcur, kq_soft_max);
+                cb(kqv, "kqv", il);
+
+                struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
+                cb(kqv_merged, "kqv_merged", il);
+
+                cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
+                cb(cur, "kqv_merged_cont", il);
+
+                cur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_o_proj, cur);
+                cb(cur, "cur", il);
+
+                // TODO: do this in place once?
+                cur = ggml_mul(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_attn_gate));
+
+                struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+                cb(ffn_inp, "ffn_inp", il);
+
+                // feed-forward network
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+
+                // TODO: do this inplace once?
+                cur = ggml_add_inplace(ctx0, ggml_mul_inplace(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_mlp_gate)), ffn_inp);
+                cb(cur, "ffn_out", il);
+
+                cur = lctx.cvec.apply_to(ctx0, cur, il);
+                cb(cur, "l_out", il);
+
+                // input for next layer
+                inpL = cur;
+            } else {
+                // self attention layer
+
+                // rope freq factors for llama3; may return nullptr for llama2 and other models
+                struct ggml_tensor * rope_factors = build_rope_factors(il);
+
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
577
578
+                    model.layers[il].wo, model.layers[il].bo,
+                    Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
+
+
+                if (il == n_layer - 1) {
+                    // skip computing output for unused tokens
+                    struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                    n_tokens = n_outputs;
+                    cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                    inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+                }
+
+                struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+                cb(ffn_inp, "ffn_inp", il);
+
+                // feed-forward network
+                cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                        model.layers[il].ffn_norm, NULL,
+                        LLM_NORM_RMS, cb, il);
+                cb(cur, "ffn_norm", il);
+
+                cur = llm_build_ffn(ctx0, lctx, cur,
+                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                        model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                        NULL,
+                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+                cb(cur, "ffn_out", il);
+
+                cur = ggml_add(ctx0, cur, ffn_inp);
+                cb(cur, "ffn_out", il);
+
+                cur = lctx.cvec.apply_to(ctx0, cur, il);
+                cb(cur, "l_out", il);
+
+                // input for next layer
+                inpL = cur;
+            }
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
         // lm_head
         cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
         cb(cur, "result_output", -1);
627
@@ -16501,6 +16891,10 @@ static struct ggml_cgraph * llama_build_graph(
628
629
630
631
632
633
634
635
636
637
             {
                 result = llm.build_llama();
             } break;
+        case LLM_ARCH_MLLAMA:
+            {
+                result = llm.build_mllama();
+            } break;
         case LLM_ARCH_BAICHUAN:
             {
                 result = llm.build_baichuan();
638
@@ -16761,10 +17155,19 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
639
640
     }
 
641
642
643
644
645
646
647
648
649
650
651
652
653
     if (batch.embd) {
-        const int64_t n_embd   = hparams.n_embd;
-        const int64_t n_tokens = batch.n_tokens;
+        if (lctx.inp_cross_attn_state && lctx.inp_cross_attn_state->buffer) {
+            ggml_backend_tensor_set(lctx.inp_cross_attn_state, batch.embd, 0, ggml_nbytes(lctx.inp_cross_attn_state));
+            // zero out inp_embd since it's not used
+            float * inp_embd_data = (float *)lctx.inp_embd->data;
+            for (int i = 0; i < ggml_nelements(lctx.inp_embd); ++i) {
+                inp_embd_data[i] = 0.0f;
+            }
+        } else {
+            const int64_t n_embd   = hparams.n_embd;
+            const int64_t n_tokens = batch.n_tokens;
654
 
655
656
657
658
-        ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
+            ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
+        }
     }
659
 
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
     if (batch.pos && lctx.inp_pos) {
@@ -17345,7 +17748,7 @@ static int llama_decode_internal(
         n_outputs = 1;
     }
 
-    lctx.sbatch.from_batch(batch_all, n_embd,
+    lctx.sbatch.from_batch(batch_all, batch_all.n_embd,
         /* simple_split */ !kv_self.recurrent,
         /* logits_all   */ n_outputs == n_tokens_all);
 
@@ -17638,7 +18041,7 @@ static int llama_encode_internal(
 
     const int64_t n_embd = hparams.n_embd;
 
-    lctx.sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
+    lctx.sbatch.from_batch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
 
     const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);
678
 
679
@@ -18648,7 +19051,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
680
681
682
683
684
685
686
687
688
689
         if (llama_model_has_encoder(&model)) {
             n_attn_layer *= 3;
         }
-        GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
+        if (qs.n_attention_wv != n_attn_layer) {
+            LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
+        }
     }
 
     size_t total_size_org = 0;
690
@@ -19814,6 +20219,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
691
692
693
694
695
696
697
 
         // use what we call a normal RoPE, operating on pairs of consecutive head values
         case LLM_ARCH_LLAMA:
+        case LLM_ARCH_MLLAMA:
         case LLM_ARCH_BAICHUAN:
         case LLM_ARCH_STARCODER:
         case LLM_ARCH_PLAMO:
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
@@ -21230,6 +21636,10 @@ void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
     ctx->cparams.causal_attn = causal_attn;
 }
 
+void llama_set_cross_attention(struct llama_context * ctx, bool cross_attention) {
+    ctx->cparams.cross_attn = cross_attention;
+}
+
 struct llama_batch llama_batch_get_one(
              llama_token * tokens,
                  int32_t   n_tokens,
@@ -21239,6 +21649,7 @@ struct llama_batch llama_batch_get_one(
         /*n_tokens       =*/ n_tokens,
         /*tokens         =*/ tokens,
         /*embd           =*/ nullptr,
+        /*n_embd         =*/ 0,
         /*pos            =*/ nullptr,
         /*n_seq_id       =*/ nullptr,
         /*seq_id         =*/ nullptr,
@@ -21254,6 +21665,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
         /*n_tokens       =*/ 0,
         /*tokens         =*/ nullptr,
         /*embd           =*/ nullptr,
+        /*n_embd         =*/ 0,
         /*pos            =*/ nullptr,
         /*n_seq_id       =*/ nullptr,
         /*seq_id         =*/ nullptr,
@@ -21265,6 +21677,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
 
     if (embd) {
         batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
+        batch.n_embd = embd;
     } else {
         batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
     }