llava.cpp 23.3 KB
Newer Older
1
/**
2
 * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
 *
 * MIT License
 *
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "clip.h"
#include "llava.h"

30
31
32
33
#include "llama.h"

#include <algorithm>
#include <cerrno>
34
35
#include <cstdio>
#include <cstdlib>
36
37
#include <cstring>
#include <limits>
38
#include <vector>
39
40
41
42
43
44
45
46

#define die(msg)          do { fputs("error: " msg "\n", stderr);                exit(1); } while (0)
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)

#define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

// RGB uint8 image
struct clip_image_u8 {
    int nx;
    int ny;

    std::vector<uint8_t> buf;
};

// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
    int nx;
    int ny;

    std::vector<float> buf;
};

struct clip_image_grid_shape {
    int first;
    int second;
};

/**
 * Selects the best resolution from a list of possible resolutions based on the original size.
 *
 * @param original_size The original size of the image in the format (width, height).
 * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
 * @return The best fit resolution in the format (width, height).
 */
static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
    int original_width  = original_size.first;
    int original_height = original_size.second;

    std::pair<int, int> best_fit;
    int max_effective_resolution = 0;
    int min_wasted_resolution = std::numeric_limits<int>::max();

    for (const auto& resolution : possible_resolutions) {
        int width = resolution.first;
        int height = resolution.second;
        float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
        int downscaled_width  = static_cast<int>(original_width * scale);
        int downscaled_height = static_cast<int>(original_height * scale);
        int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
        int wasted_resolution = (width * height) - effective_resolution;
93
        // LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
            max_effective_resolution = effective_resolution;
            min_wasted_resolution = wasted_resolution;
            best_fit = resolution;
        }
    }

    return best_fit;
}

/**
 * @brief Get the anyres image grid shape object
 *
 * @param image_size
 * @param grid_pinpoints
 * @param image_patch_size
 * @return <int, int>
 */
static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
    /**
        Conversion from gguf flat array to vector:
        std::vector<std::pair<int, int>> possible_resolutions;
        for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
            possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
        }
     */
    auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
    return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
}

// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
    struct {
        struct ggml_context * ctx;
    } model;

    const int32_t image_size = clip_image_size(ctx_clip);
    const int32_t patch_size = clip_patch_size(ctx_clip);

    int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)

    int num_patches_width  = grid_shape.first;  // grid 1-4
    int num_patches_height = grid_shape.second; // grid 1-4

    const size_t num_images = num_patches_width * num_patches_height + 1;

    // TODO: size calculation is not calculated - it's only tens of MB
    size_t ctx_size = 0;

    {
        ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
        ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
    }

    struct ggml_init_params params {
        /*.mem_size   =*/ ctx_size,
        /*.mem_buffer =*/ NULL,
        /*.no_alloc   =*/ false, // NOTE: this should be false when using the legacy API
    };

    // Python reference code for full unpad:
    /*
        base_image_feature = image_feature[0]
        image_feature = image_feature[1:]
        image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
        image_feature = image_feature.flatten(1, 2).flatten(2, 3)
        image_feature = unpad_image(image_feature, image_sizes[image_idx])
        image_feature = torch.cat((
            image_feature,
            self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
        ), dim=-1)
        image_feature = image_feature.flatten(1, 2).transpose(0, 1)
        image_feature = torch.cat((base_image_feature, image_feature), dim=0)
    */
    // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
    // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
    // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
    // Once all images are processed to prepended the base_image_features without any changes.

    // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
    /*
        image_feature = image_feature.view(2, 2, 24, 24, 4096)
        image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
        image_feature = image_feature.view(2, 24, 2, 24, 4096)
        image_feature = image_feature.flatten(0, 3)

        // Reshape to 4D tensor by merging the last two dimensions
        image_feature = image_feature.view(2, 2, 24, 24*4096)
        image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
        image_feature = image_feature.view(-1, 4096)
    */

    model.ctx = ggml_init(params);

    struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
    // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
    // fill it with the image embeddings, ignoring the base
    for (size_t i = 1; i < num_images; i++) {
        size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
        memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
    }

    struct ggml_cgraph  * gf = ggml_new_graph(model.ctx);
    size_t size_ele = ggml_type_size(GGML_TYPE_F32);

    struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
                                                                num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
                                                                num_patches_per_side,
                                                                num_patches_width,
                                                                num_patches_height,
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
    // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
    struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
    /**
     At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
         image_feature = torch.cat((
        image_feature,
        self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
    ), dim=-1)
     *
     */

    // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
    struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side,  size_ele * clip_n_mmproj_embd(ctx_clip), 0);
    // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
    ggml_build_forward_expand(gf, flatten);
    ggml_graph_compute_with_ctx(model.ctx, gf, 1);
223
    struct ggml_tensor* result = ggml_graph_node(gf, -1);
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

    memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
    // append without newline tokens (default behavior in llava_arch when not using unpad ):
    memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
    *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));

    // Debug: Test single segments
    // Current findings: sending base image, sending a segment embedding all works similar to python
    // However, permuted embeddings do not work yet (stride issue?)
    // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
    // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
    // *n_img_pos_out=576;

    ggml_free(model.ctx);
    return true;
}

static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
    int width = image->nx;
    int height = image->ny;
    int num_patches = (height / patch_size) * (width / patch_size);
    clip_image_f32 * patch = clip_image_f32_init();
    patch->nx = patch_size * num_patches;
    patch->ny = patch_size;
    patch->buf.resize(3 * patch->nx * patch->ny);

    int patch_index = 0;

    for (int i = 0; i < height; i += patch_size) {
        for (int j = 0; j < width; j += patch_size) {
            for (int pi = 0; pi < patch_size; ++pi) {
                for (int pj = 0; pj < patch_size; ++pj) {
                    int input_index = ((i + pi) * width + (j + pj)) * 3;
                    int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
                    patch->buf[output_index] = image->buf[input_index];
                    patch->buf[output_index+1] = image->buf[input_index+1];
                    patch->buf[output_index+2] = image->buf[input_index+2];
                }
            }
            patch_index++;
        }
    }
    return patch;
}

static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
    // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
    clip_image_f32_batch img_res_v;
    img_res_v.size = 0;
    img_res_v.data = nullptr;
    if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
275
        LOG_ERR("%s: unable to preprocess image\n", __func__);
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        delete[] img_res_v.data;
        return false;
    }

    const int64_t t_img_enc_start_us = ggml_time_us();

    const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);

    if (clip_is_minicpmv(ctx_clip)) {
        std::vector<float *> image_embd_v;
        image_embd_v.resize(img_res_v.size);
        struct clip_image_size * load_image_size = clip_image_size_init();
        for (size_t i = 0; i < img_res_v.size; i++) {
            const int64_t t_img_enc_step_start_us = ggml_time_us();
            image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip));
            int patch_size=14;
            load_image_size->width = img_res_v.data[i].nx;
            load_image_size->height = img_res_v.data[i].ny;
            clip_add_load_image_size(ctx_clip, load_image_size);
            bool encoded = false;
            int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
            if (has_minicpmv_projector == 2) {
                encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
            }
            else if (has_minicpmv_projector == 3) {
                encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
            }
            if (!encoded) {
304
                LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
305
306
307
                return false;
            }
            const int64_t t_img_enc_steop_batch_us = ggml_time_us();
308
            LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
309
310
        }
        const int64_t t_img_enc_batch_us = ggml_time_us();
311
        LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
312
313
314
315
316
317
318
319
320
321
322
323
324
325

        int n_img_pos_out = 0;
        for (size_t i = 0; i < image_embd_v.size(); i++) {
            std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip));
            n_img_pos_out += clip_n_patches(ctx_clip);
        }
        *n_img_pos = n_img_pos_out;
        for (size_t i = 0; i < image_embd_v.size(); i++) {
            free(image_embd_v[i]);
        }
        image_embd_v.clear();
        load_image_size->width = img->nx;
        load_image_size->height = img->ny;
        clip_add_load_image_size(ctx_clip, load_image_size);
326
        LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
327
328
329
330
331
332
333
    }
    else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
        // flat / default llava-1.5 type embedding
        *n_img_pos = clip_n_patches(ctx_clip);
        bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
        delete[] img_res_v.data;
        if (!encoded) {
334
            LOG_ERR("Unable to encode image\n");
335
336
337
338
339
340
341
342
343
344
345
346
347

            return false;
        }
    }
    else {
        // spatial_unpad llava-1.6 type embedding
        // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
        std::vector<float *> image_embd_v;
        image_embd_v.resize(img_res_v.size);
        for (size_t i = 0; i < img_res_v.size; i++) {
            image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
            const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
            if (!encoded) {
348
                LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
349
350
351
352
                return false;
            }
        }
        const int64_t t_img_enc_batch_us = ggml_time_us();
353
        LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

        const int32_t * image_grid = clip_image_grid(ctx_clip);

        std::vector<std::pair<int, int>> grid_pinpoints;
        for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
            grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
        }

        // free all img_res_v - not needed anymore
        delete[] img_res_v.data;
        img_res_v.size = 0;
        img_res_v.data = nullptr;

        const int32_t image_size = clip_image_size(ctx_clip);

        struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);

        int n_img_pos_out;
        clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
        *n_img_pos = n_img_pos_out;

        for (size_t i = 0; i < image_embd_v.size(); i++) {
            free(image_embd_v[i]);
        }
        image_embd_v.clear();

        // debug image/segment/normalization content:
        // clip_image_u8 * tmp = clip_image_u8_init();
        // clip_image_convert_f32_to_u8(*image_feature, *tmp);
        // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
    }

386
    LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
387
388
389
390

    const int64_t t_img_enc_end_us = ggml_time_us();
    float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;

391
    LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
392
393
394
395
396
397
398
399
400

    return true;
}

bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
        // make sure that the correct mmproj was used, i.e., compare apples to apples
    int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
    auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
    if (n_image_embd != n_llama_embd) {
401
        LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
402
403
404
405
406
407
408
409
410
411
412
413
        return false;
    }
    return true;
}

bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
    int num_max_patches = 6;
    if (clip_is_minicpmv(ctx_clip)) {
        num_max_patches = 10;
    }
    float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
    if (!image_embd) {
414
        LOG_ERR("Unable to allocate memory for image embeddings\n");
415
416
417
418
419
        return false;
    }

    int n_img_pos;
    if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
420
        LOG_ERR("%s: cannot encode image, aborting\n", __func__);
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
        free(image_embd);
        return false;
    }
    *image_embd_out = image_embd;
    *n_img_pos_out = n_img_pos;

    return true;
}

bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
    int n_embd  = llama_n_embd(llama_get_model(ctx_llama));

    for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
        int n_eval = image_embed->n_image_pos - i;
        if (n_eval > n_batch) {
            n_eval = n_batch;
        }
438
        llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), n_embd, nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
439
        if (llama_decode(ctx_llama, batch)) {
440
            LOG_ERR("%s : failed to eval\n", __func__);
441
442
443
444
445
446
447
448
449
450
451
            return false;
        }
        *n_past += n_eval;
    }
    return true;
}

struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
    clip_image_u8 * img = clip_image_u8_init();
    if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
        clip_image_u8_free(img);
452
        LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
453
454
455
456
457
458
459
460
        return NULL;
    }

    float* image_embed = NULL;
    int n_image_pos = 0;
    bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
    if (!image_embed_result) {
        clip_image_u8_free(img);
461
        LOG_ERR("%s: coulnd't embed the image\n", __func__);
462
463
464
465
466
467
468
469
470
471
472
473
474
        return NULL;
    }

    clip_image_u8_free(img);
    auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
    result->embed = image_embed;
    result->n_image_pos = n_image_pos;
    return result;
}

static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
    auto file = fopen(path, "rb");
    if (file == NULL) {
475
        LOG_ERR("%s: can't read file %s\n", __func__, path);
476
477
478
479
480
481
482
483
484
        return false;
    }

    fseek(file, 0, SEEK_END);
    auto fileSize = ftell(file);
    fseek(file, 0, SEEK_SET);

    auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
    if (buffer == NULL) {
485
        LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
        perror("Memory allocation error");
        fclose(file);
        return false;
    }
    errno = 0;
    size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
    if (ferror(file)) {
        die_fmt("read error: %s", strerror(errno));
    }
    if (ret != (size_t) fileSize) {
        die("unexpectedly reached end of file");
    }
    fclose(file); // Close the file

    *bytesOut = buffer;
    *sizeOut = fileSize;
    return true;
}

struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
    unsigned char* image_bytes;
    long image_bytes_length;
    auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
    if (!loaded) {
510
        LOG_ERR("%s: failed to load %s\n", __func__, image_path);
511
512
513
514
515
516
517
518
519
520
521
522
523
        return NULL;
    }

    llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
    free(image_bytes);

    return embed;
}

void llava_image_embed_free(struct llava_image_embed * embed) {
    free(embed->embed);
    free(embed);
}