clip.cpp 187 KB
Newer Older
1
2
3
4
5
// NOTE: This is modified from clip.cpp only for LLaVA,
// so there might be still unnecessary artifacts hanging around
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
6
#include "clip-impl.h"
7
#include "ggml.h"
8
#include "ggml-cpp.h"
9
#include "ggml-cpu.h"
10
11
#include "ggml-alloc.h"
#include "ggml-backend.h"
12
#include "gguf.h"
13
14
15
16
17
18
19
20
21

#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <map>
#include <regex>
#include <stdexcept>
22
#include <unordered_set>
23
24
25
26
#include <vector>
#include <sstream>
#include <cinttypes>
#include <limits>
27
#include <array>
28
#include <numeric>
29
#include <functional>
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
    #define NOMINMAX
#endif
#include <windows.h>
#if __GLIBCXX__
#include <cstdio>
#include <ext/stdio_filebuf.h>
#include <fcntl.h>
#endif
#endif

44
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
45

46
47
enum ffn_op_type {
    FFN_GELU,
48
    FFN_GELU_ERF,
49
50
51
52
53
54
55
56
57
    FFN_SILU,
    FFN_GELU_QUICK,
};

enum norm_type {
    NORM_TYPE_NORMAL,
    NORM_TYPE_RMS,
};

58
//#define CLIP_DEBUG_FUNCTIONS
59
60
61
62
63

#ifdef CLIP_DEBUG_FUNCTIONS
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
64
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        return;
    }

    // PPM header: P6 format, width, height, and max color value
    file << "P6\n" << img.nx << " " << img.ny << "\n255\n";

    // Write pixel data
    for (size_t i = 0; i < img.buf.size(); i += 3) {
        // PPM expects binary data in RGB format, which matches our image buffer
        file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
    }

    file.close();
}

static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
83
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        return;
    }

    int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
    int bytesPerPixel = 3;
    int widthInBytes = img.nx * bytesPerPixel;
    int paddingAmount = (4 - (widthInBytes % 4)) % 4;
    int stride = widthInBytes + paddingAmount;

    // Bitmap file header
    unsigned char fileHeader[14] = {
        'B','M',     // Signature
        0,0,0,0,    // Image file size in bytes
        0,0,0,0,    // Reserved
        54,0,0,0    // Start of pixel array
    };

    // Total file size
    fileSize = 54 + (stride * img.ny);
    fileHeader[2] = (unsigned char)(fileSize);
    fileHeader[3] = (unsigned char)(fileSize >> 8);
    fileHeader[4] = (unsigned char)(fileSize >> 16);
    fileHeader[5] = (unsigned char)(fileSize >> 24);

    // Bitmap information header (BITMAPINFOHEADER)
    unsigned char infoHeader[40] = {
        40,0,0,0,   // Size of this header (40 bytes)
        0,0,0,0,    // Image width
        0,0,0,0,    // Image height
        1,0,        // Number of color planes
        24,0,       // Bits per pixel
        0,0,0,0,    // No compression
        0,0,0,0,    // Image size (can be 0 for no compression)
        0,0,0,0,    // X pixels per meter (not specified)
        0,0,0,0,    // Y pixels per meter (not specified)
        0,0,0,0,    // Total colors (color table not used)
        0,0,0,0     // Important colors (all are important)
    };

    // Width and height in the information header
    infoHeader[4] = (unsigned char)(img.nx);
    infoHeader[5] = (unsigned char)(img.nx >> 8);
    infoHeader[6] = (unsigned char)(img.nx >> 16);
    infoHeader[7] = (unsigned char)(img.nx >> 24);
    infoHeader[8] = (unsigned char)(img.ny);
    infoHeader[9] = (unsigned char)(img.ny >> 8);
    infoHeader[10] = (unsigned char)(img.ny >> 16);
    infoHeader[11] = (unsigned char)(img.ny >> 24);

    // Write file headers
    file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
    file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));

    // Pixel data
    std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
    for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
        for (int x = 0; x < img.nx; ++x) {
            // Each pixel
            size_t pixelIndex = (y * img.nx + x) * 3;
            unsigned char pixel[3] = {
                img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
                img.buf[pixelIndex + 1],
                img.buf[pixelIndex]
            };
            file.write(reinterpret_cast<char*>(pixel), 3);
        }
        // Write padding for the row
        file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
    }

    file.close();
}

// debug function to convert f32 to u8
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(3 * src.nx * src.ny);
    for (size_t i = 0; i < src.buf.size(); ++i) {
        dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
    }
}
#endif


//
// clip layers
//

173
174
175
176
177
enum patch_merge_type {
    PATCH_MERGE_FLAT,
    PATCH_MERGE_SPATIAL_UNPAD,
};

178
179
180
struct clip_hparams {
    int32_t image_size;
    int32_t patch_size;
181
182
    int32_t n_embd;
    int32_t n_ff;
183
184
185
    int32_t projection_dim;
    int32_t n_head;
    int32_t n_layer;
186
    int32_t proj_scale_factor = 0; // idefics3
187

188
189
190
    float image_mean[3];
    float image_std[3];

191
192
193
    // for models using dynamic image size, we need to have a smaller image size to warmup
    // otherwise, user will get OOM everytime they load the model
    int32_t warmup_image_size = 0;
194
    int32_t warmup_audio_size = 3000;
195
196
197

    ffn_op_type ffn_op = FFN_GELU;

198
    patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
199

200
201
    float eps = 1e-6;
    float rope_theta = 0.0;
202

203
    std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
204
    int32_t image_crop_resolution;
205
    std::unordered_set<int32_t> vision_feature_layer;
206
207
    int32_t attn_window_size = 0;
    int32_t n_wa_pattern = 0;
208
    int32_t spatial_merge_size = 0;
209
210
211
212
213
214
215
216

    // audio
    int32_t n_mel_bins = 0; // whisper preprocessor
    int32_t proj_stack_factor = 0; // ultravox

    // legacy
    bool has_llava_projector = false;
    int minicpmv_version = 0;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
217
    int32_t minicpmv_query_num = 0;         // MiniCPM-V query number
218
219
220
221
};

struct clip_layer {
    // attention
222
223
224
225
226
227
    ggml_tensor * k_w = nullptr;
    ggml_tensor * k_b = nullptr;
    ggml_tensor * q_w = nullptr;
    ggml_tensor * q_b = nullptr;
    ggml_tensor * v_w = nullptr;
    ggml_tensor * v_b = nullptr;
228

229
230
    ggml_tensor * o_w = nullptr;
    ggml_tensor * o_b = nullptr;
231

232
233
    ggml_tensor * k_norm = nullptr;
    ggml_tensor * q_norm = nullptr;
234

235
236
237
    // layernorm 1
    ggml_tensor * ln_1_w = nullptr;
    ggml_tensor * ln_1_b = nullptr;
238

239
240
241
242
243
244
    ggml_tensor * ff_up_w = nullptr;
    ggml_tensor * ff_up_b = nullptr;
    ggml_tensor * ff_gate_w = nullptr;
    ggml_tensor * ff_gate_b = nullptr;
    ggml_tensor * ff_down_w = nullptr;
    ggml_tensor * ff_down_b = nullptr;
245
246

    // layernorm 2
247
248
249
250
251
252
    ggml_tensor * ln_2_w = nullptr;
    ggml_tensor * ln_2_b = nullptr;

    // layer scale (no bias)
    ggml_tensor * ls_1_w = nullptr;
    ggml_tensor * ls_2_w = nullptr;
253
254
};

255
256
257
258
struct clip_model {
    clip_modality modality = CLIP_MODALITY_VISION;
    projector_type proj_type = PROJECTOR_TYPE_MLP;
    clip_hparams hparams;
259
260

    // embeddings
261
262
263
264
265
    ggml_tensor * class_embedding = nullptr;
    ggml_tensor * patch_embeddings_0 = nullptr;
    ggml_tensor * patch_embeddings_1 = nullptr;  // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
    ggml_tensor * patch_bias = nullptr;
    ggml_tensor * position_embeddings = nullptr;
266

267
268
    ggml_tensor * pre_ln_w = nullptr;
    ggml_tensor * pre_ln_b = nullptr;
269
270
271

    std::vector<clip_layer> layers;

272
273
    ggml_tensor * post_ln_w;
    ggml_tensor * post_ln_b;
274

275
276
277
    ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
    ggml_tensor * mm_fc_w;
    ggml_tensor * mm_fc_b;
278
279

    // LLaVA projection
280
    ggml_tensor * mm_input_norm_w = nullptr;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
281
    ggml_tensor * mm_input_norm_b = nullptr;
282
283
284
285
    ggml_tensor * mm_0_w = nullptr;
    ggml_tensor * mm_0_b = nullptr;
    ggml_tensor * mm_2_w = nullptr;
    ggml_tensor * mm_2_b = nullptr;
286

287
    ggml_tensor * image_newline = nullptr;
288
289

    // Yi type models with mlp+normalization projection
290
291
292
293
294
295
296
297
298
299
300
301
    ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
    ggml_tensor * mm_1_b = nullptr;
    ggml_tensor * mm_3_w = nullptr;
    ggml_tensor * mm_3_b = nullptr;
    ggml_tensor * mm_4_w = nullptr;
    ggml_tensor * mm_4_b = nullptr;

    // GLMV-Edge projection
    ggml_tensor * mm_model_adapter_conv_w = nullptr;
    ggml_tensor * mm_model_adapter_conv_b = nullptr;
    ggml_tensor * mm_glm_tok_boi = nullptr;
    ggml_tensor * mm_glm_tok_eoi = nullptr;
302

303
    // MobileVLM projection
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    ggml_tensor * mm_model_mlp_1_w = nullptr;
    ggml_tensor * mm_model_mlp_1_b = nullptr;
    ggml_tensor * mm_model_mlp_3_w = nullptr;
    ggml_tensor * mm_model_mlp_3_b = nullptr;
    ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
328
329

    // MobileVLM_V2 projection
330
331
332
333
334
335
    ggml_tensor * mm_model_mlp_0_w = nullptr;
    ggml_tensor * mm_model_mlp_0_b = nullptr;
    ggml_tensor * mm_model_mlp_2_w = nullptr;
    ggml_tensor * mm_model_mlp_2_b = nullptr;
    ggml_tensor * mm_model_peg_0_w = nullptr;
    ggml_tensor * mm_model_peg_0_b = nullptr;
336
337

    // MINICPMV projection
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    ggml_tensor * mm_model_pos_embed_k = nullptr;
    ggml_tensor * mm_model_query = nullptr;
    ggml_tensor * mm_model_proj = nullptr;
    ggml_tensor * mm_model_kv_proj = nullptr;
    ggml_tensor * mm_model_attn_q_w = nullptr;
    ggml_tensor * mm_model_attn_q_b = nullptr;
    ggml_tensor * mm_model_attn_k_w = nullptr;
    ggml_tensor * mm_model_attn_k_b = nullptr;
    ggml_tensor * mm_model_attn_v_w = nullptr;
    ggml_tensor * mm_model_attn_v_b = nullptr;
    ggml_tensor * mm_model_attn_o_w = nullptr;
    ggml_tensor * mm_model_attn_o_b = nullptr;
    ggml_tensor * mm_model_ln_q_w = nullptr;
    ggml_tensor * mm_model_ln_q_b = nullptr;
    ggml_tensor * mm_model_ln_kv_w = nullptr;
    ggml_tensor * mm_model_ln_kv_b = nullptr;
    ggml_tensor * mm_model_ln_post_w = nullptr;
    ggml_tensor * mm_model_ln_post_b = nullptr;
356
357

    // gemma3
358
359
    ggml_tensor * mm_input_proj_w = nullptr;
    ggml_tensor * mm_soft_emb_norm_w = nullptr;
360
361

    // pixtral
362
363
    ggml_tensor * token_embd_img_break = nullptr;
    ggml_tensor * mm_patch_merger_w = nullptr;
364

365
366
367
368
369
370
371
372
373
374
375
376
    // ultravox / whisper encoder
    ggml_tensor * conv1d_1_w = nullptr;
    ggml_tensor * conv1d_1_b = nullptr;
    ggml_tensor * conv1d_2_w = nullptr;
    ggml_tensor * conv1d_2_b = nullptr;
    ggml_tensor * mm_norm_pre_w = nullptr;
    ggml_tensor * mm_norm_mid_w = nullptr;

    bool audio_has_avgpool() const {
        return proj_type == PROJECTOR_TYPE_QWEN2A
            || proj_type == PROJECTOR_TYPE_VOXTRAL;
    }
377

378
379
380
381
382
    bool audio_has_stack_frames() const {
        return proj_type == PROJECTOR_TYPE_ULTRAVOX
            || proj_type == PROJECTOR_TYPE_VOXTRAL;
    }
};
383

384
385
struct clip_ctx {
    clip_model model;
386

387
388
    gguf_context_ptr ctx_gguf;
    ggml_context_ptr ctx_data;
389
390
391

    std::vector<uint8_t> buf_compute_meta;

392
393
394
    std::vector<ggml_backend_t> backend_ptrs;
    std::vector<ggml_backend_buffer_type_t> backend_buft;

395
396
    ggml_backend_t backend = nullptr;
    ggml_backend_t backend_cpu = nullptr;
397
398
    ggml_backend_buffer_ptr buf;

399
    int max_nodes = 8192;
400
    ggml_backend_sched_ptr sched;
401

402
403
404
    // for debugging
    bool debug_graph = false;
    std::vector<ggml_tensor *> debug_print_tensors;
405

406
    clip_ctx(clip_context_params & ctx_params) {
407
        debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
408
        backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
409
410
411
        if (!backend_cpu) {
            throw std::runtime_error("failed to initialize CPU backend");
        }
412
413
414
415
416
417
418
419
420
421
        if (ctx_params.use_gpu) {
            auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
            if (backend_name != nullptr) {
                backend = ggml_backend_init_by_name(backend_name, nullptr);
                if (!backend) {
                    LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
                }
            }
            if (!backend) {
                backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
422
                backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
423
424
            }
        }
425
426
427
428
429
430
431
432
433
434
435
436
437
438

        if (backend) {
            LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
            backend_ptrs.push_back(backend);
            backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
        } else {
            backend = backend_cpu;
            LOG_INF("%s: CLIP using CPU backend\n", __func__);
        }

        backend_ptrs.push_back(backend_cpu);
        backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));

        sched.reset(
439
            ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
440
441
442
443
444
445
446
447
448
        );
    }

    ~clip_ctx() {
        ggml_backend_free(backend);
        if (backend != backend_cpu) {
            ggml_backend_free(backend_cpu);
        }
    }
449
450
451
452
453

    // this function is added so that we don't change too much of the existing code
    projector_type proj_type() const {
        return model.proj_type;
    }
454
455
};

456
457
struct clip_graph {
    clip_ctx * ctx;
458
    const clip_model & model;
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
    const clip_hparams & hparams;

    // we only support single image per batch
    const clip_image_f32 & img;

    const int patch_size;
    const int n_patches_x;
    const int n_patches_y;
    const int n_patches;
    const int n_embd;
    const int n_head;
    const int d_head;
    const int n_layer;
    const float eps;
    const float kq_scale;

    ggml_context_ptr ctx0_ptr;
    ggml_context * ctx0;
    ggml_cgraph * gf;

    clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
            ctx(ctx),
481
            model(ctx->model),
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
            hparams(model.hparams),
            img(img),
            patch_size(hparams.patch_size),
            n_patches_x(img.nx / patch_size),
            n_patches_y(img.ny / patch_size),
            n_patches(n_patches_x * n_patches_y),
            n_embd(hparams.n_embd),
            n_head(hparams.n_head),
            d_head(n_embd / n_head),
            n_layer(hparams.n_layer),
            eps(hparams.eps),
            kq_scale(1.0f / sqrtf((float)d_head)) {
        struct ggml_init_params params = {
            /*.mem_size   =*/ ctx->buf_compute_meta.size(),
            /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
            /*.no_alloc   =*/ true,
        };
        ctx0_ptr.reset(ggml_init(params));
        ctx0 = ctx0_ptr.get();
501
        gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
502
503
504
505
    }

    ggml_cgraph * build_siglip() {
        ggml_tensor * inp = build_inp();
Daniel Hiltgen's avatar
Daniel Hiltgen committed
506
507
508
509
510
511

        ggml_tensor * learned_pos_embd = model.position_embeddings;
        if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
            learned_pos_embd = resize_position_embeddings();
        }

512
513
514
515
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
516
                                learned_pos_embd,
517
518
                                nullptr);

519
        if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
520
521
522
523
524
            const int batch_size = 1;
            GGML_ASSERT(n_patches_x == n_patches_y);
            const int patches_per_image = n_patches_x;
            const int kernel_size = hparams.proj_scale_factor;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
525
526
            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

            // doing a pool2d to reduce the number of output tokens
            cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
            cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
            cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));

            // apply norm before projection
            cur = ggml_rms_norm(ctx0, cur, eps);
            cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);

            // apply projection
            cur = ggml_mul_mat(ctx0,
                ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
                cur);

542
        } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
543
            // pixel_shuffle
544
            // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
Daniel Hiltgen's avatar
Daniel Hiltgen committed
545
546
547
            const int scale_factor = model.hparams.proj_scale_factor;
            cur = build_patch_merge_permute(cur, scale_factor);
            cur = ggml_mul_mat(ctx0, model.projection, cur);
548

Daniel Hiltgen's avatar
Daniel Hiltgen committed
549
550
        } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
            // pixel unshuffle block
551
            const int scale_factor = model.hparams.proj_scale_factor;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
552
            cur = build_patch_merge_permute(cur, scale_factor);
553

Daniel Hiltgen's avatar
Daniel Hiltgen committed
554
555
556
557
558
559
560
561
562
563
            // projection
            cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
            cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
            cur = ggml_add(ctx0, cur, model.mm_input_norm_b);

            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_2_b);
564
565
        } else {
            GGML_ABORT("SigLIP: Unsupported projector type");
566
567
        }

568
569
        // build the graph
        ggml_build_forward_expand(gf, cur);
570

571
572
        return gf;
    }
573

574
575
    ggml_cgraph * build_pixtral() {
        const int n_merge = hparams.spatial_merge_size;
576

577
578
579
580
        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);
581

582
583
584
        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);
585

586
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
587
            return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
588
        };
589

590
591
592
593
594
595
596
        ggml_tensor * inp = build_inp();
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_RMS,
                                hparams.ffn_op,
                                nullptr, // no learned pos embd
                                add_pos);
597

598
599
600
601
        // mistral small 3.1 patch merger
        // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
        if (model.mm_patch_merger_w) {
            GGML_ASSERT(hparams.spatial_merge_size > 0);
602

603
            cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
604

605
606
607
608
            // reshape image tokens to 2D grid
            cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
            cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
            cur = ggml_cont(ctx0, cur);
609

610
611
612
613
            // torch.nn.functional.unfold is just an im2col under the hood
            // we just need a dummy kernel to make it work
            ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
            cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
614

615
616
617
            // project to n_embd
            cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
            cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
618
619
        }

620
621
622
623
624
625
        // LlavaMultiModalProjector (always using GELU activation)
        {
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            if (model.mm_1_b) {
                cur = ggml_add(ctx0, cur, model.mm_1_b);
            }
626

627
628
629
630
631
632
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            if (model.mm_2_b) {
                cur = ggml_add(ctx0, cur, model.mm_2_b);
            }
        }
633

634
635
636
637
638
639
        // arrangement of the [IMG_BREAK] token
        {
            // not efficient, but works
            // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
            // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
            // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
640

641
642
643
644
645
            const int p_y             = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
            const int p_x             = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
            const int p_total         = p_x * p_y;
            const int n_embd_text     = cur->ne[0];
            const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
646

647
648
649
650
651
652
653
654
655
            ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
            ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
            tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
            tok = ggml_add(ctx0, tok, model.token_embd_img_break);
            tmp = ggml_concat(ctx0, tmp, tok, 1);
            cur = ggml_view_2d(ctx0, tmp,
                n_embd_text, n_tokens_output,
                ggml_row_size(tmp->type, n_embd_text), 0);
        }
656

657
658
        // build the graph
        ggml_build_forward_expand(gf, cur);
659

660
        return gf;
661
662
    }

663
664
665
666
    // Qwen2VL and Qwen2.5VL use M-RoPE
    ggml_cgraph * build_qwen2vl() {
        GGML_ASSERT(model.patch_bias == nullptr);
        GGML_ASSERT(model.class_embedding == nullptr);
667

668
669
670
671
672
        const int batch_size       = 1;
        const bool use_window_attn = hparams.n_wa_pattern > 0;
        const int n_wa_pattern     = hparams.n_wa_pattern;
        const int n_pos            = n_patches;
        const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
673

674
        norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
675
676
            ? NORM_TYPE_RMS // qwen 2.5 vl
            : NORM_TYPE_NORMAL; // qwen 2 vl
677

678
        int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
679

680
681
        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
682

683
684
        GGML_ASSERT(img.nx % (patch_size * 2) == 0);
        GGML_ASSERT(img.ny % (patch_size * 2) == 0);
685

686
687
688
689
690
        // second conv dimension
        {
            auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
            inp = ggml_add(ctx0, inp, inp_1);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
691
692
            inp = ggml_permute(ctx0, inp, 1, 2, 0, 3);  // [w, h, c, b] -> [c, w, h, b]
            inp = ggml_cont_4d(
693
694
695
696
697
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
            inp = ggml_reshape_4d(
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
Daniel Hiltgen's avatar
Daniel Hiltgen committed
698
699
            inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
            inp = ggml_cont_3d(
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
                ctx0, inp,
                n_embd, n_patches_x * n_patches_y, batch_size);
        }

        ggml_tensor * inpL           = inp;
        ggml_tensor * window_mask    = nullptr;
        ggml_tensor * window_idx     = nullptr;
        ggml_tensor * inv_window_idx = nullptr;

        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
        }

        if (use_window_attn) {
            // handle window attention inputs
            inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
            ggml_set_name(inv_window_idx, "inv_window_idx");
            ggml_set_input(inv_window_idx);
            // mask for window attention
            window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
            ggml_set_name(window_mask, "window_mask");
            ggml_set_input(window_mask);

            // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
            GGML_ASSERT(batch_size == 1);
            inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
            inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
            inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
        }

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
739

740
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
741

742
743
744
            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "ln1", il);
745

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
            // self-attention
            {
                ggml_tensor * Qcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
                ggml_tensor * Kcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
                ggml_tensor * Vcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);

                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                // apply M-RoPE
                Qcur = ggml_rope_multi(
                    ctx0, Qcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
                Kcur = ggml_rope_multi(
                    ctx0, Kcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
770

771
772
                cb(Qcur, "Qcur_rope", il);
                cb(Kcur, "Kcur_rope", il);
773

774
                ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
775

776
777
778
779
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
                cb(cur, "attn_out", il);
            }
780

781
782
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
783

784
            inpL = cur; // inpL = residual, cur = hidden_states
785

786
            cb(cur, "ffn_inp", il);
787

788
789
790
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);
791

792
793
794
795
796
797
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);
798

799
            cb(cur, "ffn_out", il);
800

801
802
803
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
804

805
            inpL = cur;
806
807
        }

808
809
810
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
811
812
        }

813
814
815
        // multimodal projection
        ggml_tensor * embeddings = inpL;
        embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
816

817
818
        embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
819

820
821
822
823
        // GELU activation
        embeddings = ggml_gelu(ctx0, embeddings);

        // Second linear layer
824
825
826
        embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);

827
828
829
830
        if (use_window_attn) {
            window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
            ggml_set_name(window_idx, "window_idx");
            ggml_set_input(window_idx);
831

832
833
834
835
836
837
            // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
            GGML_ASSERT(batch_size == 1);
            embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
            embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
            embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
        }
838

839
840
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
841

842
        return gf;
843
844
    }

845
846
    ggml_cgraph * build_minicpmv() {
        const int batch_size = 1;
847

848
849
        GGML_ASSERT(model.class_embedding == nullptr);
        const int n_pos = n_patches;
850

851
852
853
854
855
        // position embeddings for the projector (not for ViT)
        int n_output_dim = clip_n_mmproj_embd(ctx);
        ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
        ggml_set_name(pos_embed, "pos_embed");
        ggml_set_input(pos_embed);
856

857
858
859
860
        // for selecting learned pos embd, used by ViT
        struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);
861

862
863
864
865
866
867
868
869
870
        ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);

        ggml_tensor * inp = build_inp();
        ggml_tensor * embeddings = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                learned_pos_embd,
                                nullptr);
871

872
        // resampler projector (it is just another transformer)
873

874
875
        ggml_tensor * q = model.mm_model_query;
        ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
876

877
878
879
        // norm
        q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
        v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
880

881
882
        // k = v + pos_embed
        ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
883

884
885
886
887
888
        // attention
        {
            int n_embd = clip_n_mmproj_embd(ctx);
            const int d_head = 128;
            int n_head = n_embd/d_head;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
889
890
            // Use actual config value if available, otherwise fall back to hardcoded values
            int num_query = ctx->model.hparams.minicpmv_query_num;
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
            ggml_tensor * Q = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
                model.mm_model_attn_q_b);
            ggml_tensor * K = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
                model.mm_model_attn_k_b);
            ggml_tensor * V = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
                model.mm_model_attn_v_b);

            Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
            K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
            V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);

            cb(Q, "resampler_Q", -1);
            cb(K, "resampler_K", -1);
            cb(V, "resampler_V", -1);

            embeddings = build_attn(
                model.mm_model_attn_o_w,
                model.mm_model_attn_o_b,
                Q, K, V, nullptr, kq_scale, -1);
            cb(embeddings, "resampler_attn_out", -1);
        }
        // layernorm
        embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);

        // projection
        embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
920

921
922
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
923

924
        return gf;
925
926
    }

927
928
929
    ggml_cgraph * build_internvl() {
        GGML_ASSERT(model.class_embedding != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);
930

931
932
        const int n_pos = n_patches + 1;
        ggml_tensor * inp = build_inp();
933

934
935
        // add CLS token
        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
936

937
938
939
940
941
        // The larger models use a different ViT, which uses RMS norm instead of layer norm
        // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
        norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
            ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
            : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
942

943
944
945
946
947
948
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                norm_t,
                                hparams.ffn_op,
                                model.position_embeddings,
                                nullptr);
949

950
951
952
953
        // remove CLS token
        cur = ggml_view_2d(ctx0, cur,
            n_embd, n_patches,
            ggml_row_size(cur->type, n_embd), 0);
954

955
        // pixel shuffle
956
        {
957
958
959
960
961
962
963
            const int scale_factor = model.hparams.proj_scale_factor;
            const int bsz    = 1; // batch size, always 1 for now since we don't support batching
            const int height = n_patches_y;
            const int width  = n_patches_x;
            GGML_ASSERT(scale_factor > 0);
            cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
964
            cur = ggml_cont_4d(ctx0, cur,
965
966
967
968
969
970
                n_embd * scale_factor * scale_factor,
                height / scale_factor,
                width / scale_factor,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            // flatten to 2D
Daniel Hiltgen's avatar
Daniel Hiltgen committed
971
            cur = ggml_cont_2d(ctx0, cur,
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
                n_embd * scale_factor * scale_factor,
                cur->ne[1] * cur->ne[2]);
        }

        // projector (always using GELU activation)
        {
            // projector LayerNorm uses pytorch's default eps = 1e-5
            // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
            cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_3_b);
        }
987

988
989
        // build the graph
        ggml_build_forward_expand(gf, cur);
990

991
992
        return gf;
    }
993

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
    ggml_cgraph * build_llama4() {
        GGML_ASSERT(model.class_embedding != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);

        const int n_pos = n_patches + 1; // +1 for [CLS]

        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);

        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);

        ggml_tensor * inp = build_inp_raw();

        // Llama4UnfoldConvolution
        {
            ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
                                                    patch_size, patch_size, 3, n_embd);
            inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
            inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
            inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
            cb(inp, "patch_conv", -1);
        }

        // add CLS token
        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);

        // build ViT with 2D position embeddings
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
            // first half is X axis and second half is Y axis
            // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
            // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
            return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
        };
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                model.position_embeddings,
                                add_pos);

        // remove CLS token
        cur = ggml_view_2d(ctx0, cur,
            n_embd, n_patches,
            ggml_row_size(cur->type, n_embd), 0);

        // pixel shuffle
        // based on Llama4VisionPixelShuffleMLP
        // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
        {
            const int scale_factor = model.hparams.proj_scale_factor;
            const int bsz = 1; // batch size, always 1 for now since we don't support batching
            GGML_ASSERT(scale_factor > 0);
            GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
            cur = ggml_reshape_4d(ctx0, cur,
                n_embd * scale_factor,
                n_patches_x / scale_factor,
                n_patches_y,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1057
            cur = ggml_cont_4d(ctx0, cur,
1058
1059
1060
1061
                n_embd * scale_factor * scale_factor,
                n_patches_x / scale_factor,
                n_patches_y / scale_factor,
                bsz);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1062
            //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
1063
            // flatten to 2D
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1064
            cur = ggml_cont_2d(ctx0, cur,
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
                n_embd * scale_factor * scale_factor,
                n_patches / scale_factor / scale_factor);
            cb(cur, "pixel_shuffle", -1);
        }

        // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
        {
            cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
            cur = ggml_gelu(ctx0, cur);
            cb(cur, "adapter_mlp", -1);
        }

        // Llama4MultiModalProjector
        cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
        cb(cur, "projected", -1);

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
    ggml_cgraph * build_kimivl() {
        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);

        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);

        ggml_tensor * learned_pos_embd = resize_position_embeddings();

        // build ViT with 2D position embeddings
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
            // first half is X axis and second half is Y axis
            return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
        };

        ggml_tensor * inp = build_inp();
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                learned_pos_embd,
                                add_pos);

        cb(cur, "vit_out", -1);

        {
            // patch_merger
            const int scale_factor = model.hparams.proj_scale_factor;
            cur = build_patch_merge_permute(cur, scale_factor);

            // projection norm
            int proj_inp_dim = cur->ne[0];
            cur = ggml_view_2d(ctx0, cur,
                n_embd, cur->ne[1] * scale_factor * scale_factor,
                ggml_row_size(cur->type, n_embd), 0);
            cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
            cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
            cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
            cur = ggml_view_2d(ctx0, cur,
                proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
                ggml_row_size(cur->type, proj_inp_dim), 0);
            cb(cur, "proj_inp_normed", -1);

            // projection mlp
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_2_b);
            cb(cur, "proj_out", -1);
        }

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

1150
1151
1152
1153
1154
    // this graph is used by llava, granite and glm
    // due to having embedding_stack (used by granite), we cannot reuse build_vit
    ggml_cgraph * build_llava() {
        const int batch_size = 1;
        const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
1155

1156
        GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
1157

1158
1159
1160
1161
1162
1163
        // Calculate the deepest feature layer based on hparams and projector type
        int max_feature_layer = n_layer;
        {
            // Get the index of the second to last layer; this is the default for models that have a llava projector
            int il_last = hparams.n_layer - 1;
            int deepest_feature_layer = -1;
1164

1165
            if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
1166
1167
                il_last += 1;
            }
1168

1169
1170
1171
1172
1173
1174
            // If we set explicit vision feature layers, only go up to the deepest one
            // NOTE: only used by granite-vision models for now
            for (const auto & feature_layer : hparams.vision_feature_layer) {
                if (feature_layer > deepest_feature_layer) {
                    deepest_feature_layer = feature_layer;
                }
1175
            }
1176
1177
            max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
        }
1178

1179
        ggml_tensor * inp = build_inp();
1180

1181
1182
1183
        // concat class_embeddings and patch_embeddings
        if (model.class_embedding) {
            inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
1184
1185
        }

1186
1187
1188
        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);
1189

1190
        inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
1191

1192
        ggml_tensor * inpL = inp;
1193

1194
1195
1196
1197
1198
        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
            cb(inpL, "pre_ln", -1);
        }
1199

1200
1201
        std::vector<ggml_tensor *> embedding_stack;
        const auto & vision_feature_layer = hparams.vision_feature_layer;
1202

1203
1204
1205
1206
        // loop over layers
        for (int il = 0; il < max_feature_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
1207

1208
1209
1210
1211
1212
            // If this is an embedding feature layer, save the output.
            // NOTE: 0 index here refers to the input to the encoder.
            if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
                embedding_stack.push_back(cur);
            }
1213

1214
1215
1216
            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "layer_inp_normed", il);
1217

1218
1219
1220
1221
1222
1223
            // self-attention
            {
                ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
                if (layer.q_b) {
                    Qcur = ggml_add(ctx0, Qcur, layer.q_b);
                }
1224

1225
1226
1227
1228
                ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
                if (layer.k_b) {
                    Kcur = ggml_add(ctx0, Kcur, layer.k_b);
                }
1229

1230
1231
1232
1233
                ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
                if (layer.v_b) {
                    Vcur = ggml_add(ctx0, Vcur, layer.v_b);
                }
1234

1235
1236
1237
                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
1238

1239
1240
1241
                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);
1242

1243
1244
1245
1246
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
            }
1247

1248
1249
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
1250

1251
            inpL = cur; // inpL = residual, cur = hidden_states
1252

1253
            cb(cur, "ffn_inp", il);
1254

1255
1256
1257
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "ffn_inp_normed", il);
1258

1259
1260
1261
1262
1263
1264
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);
1265

1266
            cb(cur, "ffn_out", il);
1267

1268
1269
1270
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
1271

1272
            inpL = cur;
1273
        }
1274

1275
1276
1277
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
1278
        }
1279

1280
        ggml_tensor * embeddings = inpL;
1281

1282
1283
1284
1285
1286
1287
        // process vision feature layers (used by granite)
        {
            // final layer is a vision feature layer
            if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
                embedding_stack.push_back(inpL);
            }
1288

1289
1290
1291
1292
1293
1294
1295
1296
            // If feature layers are explicitly set, stack them (if we have multiple)
            if (!embedding_stack.empty()) {
                embeddings = embedding_stack[0];
                for (size_t i = 1; i < embedding_stack.size(); i++) {
                    embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
                }
            }
        }
1297

1298
        // llava projector (also used by granite)
1299
        if (ctx->model.hparams.has_llava_projector) {
1300
            embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
1301

1302
1303
1304
            ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
            ggml_set_name(patches, "patches");
            ggml_set_input(patches);
1305

1306
1307
1308
            // shape [1, 576, 1024]
            // ne is whcn, ne = [1024, 576, 1, 1]
            embeddings = ggml_get_rows(ctx0, embeddings, patches);
1309

1310
            // print_tensor_info(embeddings, "embeddings");
1311

1312
            // llava projector
1313
            if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
1314
1315
                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
1316

1317
1318
1319
1320
1321
1322
                embeddings = ggml_gelu(ctx0, embeddings);
                if (model.mm_2_w) {
                    embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
                    embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
                }
            }
1323
            else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
                // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
                // First LayerNorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
                                    model.mm_1_b);

                // GELU activation
                embeddings = ggml_gelu(ctx0, embeddings);

                // Second linear layer
                embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);

                // Second LayerNorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
                                    model.mm_4_b);
            }
1344
            else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
                // MobileVLM projector
                int n_patch = 24;
                ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
                mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
                mlp_1 = ggml_gelu(ctx0, mlp_1);
                ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
                mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
                // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]

                // block 1
                ggml_tensor * block_1 = nullptr;
                {
                    // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1358
1359
                    mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
                    mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
                    // stride = 1, padding = 1, bias is nullptr
                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);

                    // layer norm
                    // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));

                    // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    // hardswish
                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    // pointwise conv
                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
                    block_1 = ggml_relu(ctx0, block_1);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
                    block_1 = ggml_hardsigmoid(ctx0, block_1);
                    // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                    int w = block_1->ne[0], h = block_1->ne[1];
                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));

                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);

                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                    // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    // residual
                    block_1 = ggml_add(ctx0, mlp_3, block_1);
                }
1405

1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
                // block_2
                {
                    // stride = 2
                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);

                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                    // layer norm
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                    // hardswish
                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                    // not sure the parameters is right for globalAvgPooling
                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    // pointwise conv
                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
                    block_1 = ggml_relu(ctx0, block_1);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
                    block_1 = ggml_hardsigmoid(ctx0, block_1);

                    // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                    int w = block_1->ne[0], h = block_1->ne[1];
                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);


                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
                    block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
                    // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
                }
                embeddings = block_1;
            }
1454
            else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
1455
1456
1457
1458
1459
1460
1461
1462
1463
            {
                int n_patch = 24;
                ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
                mlp_0 = ggml_gelu(ctx0, mlp_0);
                ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
                mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
                // mlp_2 ne = [2048, 576, 1, 1]
                // // AVG Pool Layer 2*2, strides = 2
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1464
                mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
1465
                // mlp_2 ne = [576, 2048, 1, 1]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1466
                mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
                // mlp_2 ne [24, 24, 2048, 1]
                mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
                // weight ne = [3, 3, 2048, 1]
                ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
                peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
                peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
                mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
                peg_0 = ggml_add(ctx0, peg_0, mlp_2);
                peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
                embeddings = peg_0;
            }
            else {
                GGML_ABORT("fatal error");
            }
        }
1482

1483
        // glm projector
1484
        else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
1485
            size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1486
1487
            embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
            embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
            embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
            embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
            embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
            // GLU
            {
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
                embeddings = ggml_gelu_inplace(ctx0, embeddings);
                ggml_tensor * x = embeddings;
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
                x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
1501
                embeddings = ggml_swiglu_split(ctx0, embeddings, x);
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
            }
            // arrangement of BOI/EOI token embeddings
            // note: these embeddings are not present in text model, hence we cannot process them as text tokens
            // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
            {
                embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
                embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
            }
        }
1512

1513
1514
1515
        else {
            GGML_ABORT("llava: unknown projector type");
        }
1516

1517
1518
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
1519

1520
        return gf;
1521
1522
    }

1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
    // whisper encoder with custom projector
    ggml_cgraph * build_whisper_enc() {
        const int n_frames = img.nx;
        const int n_pos    = n_frames / 2;
        GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);

        ggml_tensor * inp = build_inp_raw(1);

        // conv1d block
        {
            // convolution + gelu
            ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
            cur = ggml_add(ctx0, cur, model.conv1d_1_b);

            cur = ggml_gelu_erf(ctx0, cur);

            cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
            cur = ggml_add(ctx0, cur, model.conv1d_2_b);

            cur = ggml_gelu_erf(ctx0, cur);
            // transpose
            inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
            cb(inp, "after_conv1d", -1);
        }

        // sanity check (only check one layer, but it should be the same for all)
        GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
        GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
        GGML_ASSERT(model.layers[0].q_b);
        GGML_ASSERT(model.layers[0].v_b);
        GGML_ASSERT(!model.layers[0].k_b); // no bias for k
        GGML_ASSERT(model.post_ln_w && model.post_ln_b);

        ggml_tensor * pos_embd_selected = ggml_view_2d(
            ctx0, model.position_embeddings,
            model.position_embeddings->ne[0], n_pos,
            model.position_embeddings->nb[1], 0
        );
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                pos_embd_selected,
                                nullptr);

        cb(cur, "after_transformer", -1);

        if (model.audio_has_stack_frames()) {
            // StackAudioFrames
            // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
            int64_t stride = n_embd * hparams.proj_stack_factor;
            int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
            int64_t pad = padded_len - ggml_nelements(cur);
            if (pad > 0) {
                cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
                cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
            }
            cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
                                ggml_row_size(cur->type, stride), 0);
            cb(cur, "after_stacked", -1);
        }

        if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
            // UltravoxProjector
            // pre-norm
            cur = ggml_rms_norm(ctx0, cur, 1e-6);
            cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);

            // ffn in
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);

            // swiglu
            // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
            cur = ggml_swiglu_swapped(ctx0, cur);

            // mid-norm
            cur = ggml_rms_norm(ctx0, cur, 1e-6);
            cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);

            // ffn out
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);

        } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
            // projector
            cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_fc_b);

        } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
            // projector
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_gelu_erf(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);

        } else {
            GGML_ABORT("%s: unknown projector type", __func__);
        }

        cb(cur, "projected", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

1627
1628
1629
1630
1631
private:
    //
    // utility functions
    //

1632
1633
1634
1635
1636
1637
1638
1639
1640
    void cb(ggml_tensor * cur0, const char * name, int il) const {
        if (ctx->debug_graph) {
            ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
            std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
            ggml_set_name(cur, cur_name.c_str());
            ggml_set_output(cur);
            ggml_build_forward_expand(gf, cur);
            ctx->debug_print_tensors.push_back(cur);
        }
1641
1642
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
    // siglip2 naflex
    ggml_tensor * resize_position_embeddings() {
        ggml_tensor * pos_embd = model.position_embeddings;
        const int height       = img.ny / patch_size;
        const int width        = img.nx / patch_size;
        const uint32_t mode    = GGML_SCALE_MODE_BILINEAR;
        const int n_per_side   = (int)std::sqrt(pos_embd->ne[1]);

        GGML_ASSERT(pos_embd);

        if (height == n_per_side && width == n_per_side) {
            return pos_embd;
        }

        pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side);  // -> (n_embd, n_per_side, n_per_side)
        pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3);                         // -> (n_per_side, n_per_side, n_embd)
        pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
        pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3);                         // -> (n_embd, width, height)
        pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height);             // -> (n_embd, width * height)

        return pos_embd;
    }

1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
    // build vision transformer (ViT) cgraph
    // this function should cover most of the models
    // if your model has specific features, you should probably duplicate this function
    ggml_tensor * build_vit(
                ggml_tensor * inp,
                int64_t n_pos,
                norm_type norm_t,
                ffn_op_type ffn_t,
                ggml_tensor * learned_pos_embd,
                std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
            ) {
        if (learned_pos_embd) {
            inp = ggml_add(ctx0, inp, learned_pos_embd);
            cb(inp, "pos_embed", -1);
        }

        ggml_tensor * inpL = inp;

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
            cb(inpL, "pre_ln", -1);
        }

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states

            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "layer_inp_normed", il);

            // self-attention
            {
                ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
                if (layer.q_b) {
                    Qcur = ggml_add(ctx0, Qcur, layer.q_b);
                }
1705

1706
1707
1708
1709
                ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
                if (layer.k_b) {
                    Kcur = ggml_add(ctx0, Kcur, layer.k_b);
                }
1710

1711
1712
1713
1714
                ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
                if (layer.v_b) {
                    Vcur = ggml_add(ctx0, Vcur, layer.v_b);
                }
1715

1716
1717
1718
1719
                if (layer.q_norm) {
                    Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
                    cb(Qcur, "Qcur_norm", il);
                }
1720

1721
1722
1723
1724
                if (layer.k_norm) {
                    Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
                    cb(Kcur, "Kcur_norm", il);
                }
1725

1726
1727
1728
                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
1729

1730
1731
1732
                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);
1733

1734
1735
1736
1737
1738
1739
                if (add_pos) {
                    Qcur = add_pos(Qcur, layer);
                    Kcur = add_pos(Kcur, layer);
                    cb(Qcur, "Qcur_pos", il);
                    cb(Kcur, "Kcur_pos", il);
                }
1740

1741
1742
1743
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
1744
            }
1745

1746
1747
1748
            if (layer.ls_1_w) {
                cur = ggml_mul(ctx0, cur, layer.ls_1_w);
                cb(cur, "attn_out_scaled", il);
1749
            }
1750

1751
1752
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
1753

1754
            inpL = cur; // inpL = residual, cur = hidden_states
1755

1756
            cb(cur, "ffn_inp", il);
1757

1758
1759
1760
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);
1761

1762
1763
1764
1765
1766
1767
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                ffn_t, il);
1768

1769
            cb(cur, "ffn_out", il);
1770

1771
1772
1773
1774
            if (layer.ls_2_w) {
                cur = ggml_mul(ctx0, cur, layer.ls_2_w);
                cb(cur, "ffn_out_scaled", il);
            }
1775

1776
1777
1778
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
1779

1780
            inpL = cur;
1781
1782
        }

1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
        if (ctx->model.audio_has_avgpool()) {
            ggml_tensor * cur = inpL;
            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont(ctx0, cur);
            cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont(ctx0, cur);
            inpL = cur;
        }

1793
1794
1795
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
1796
        }
1797
1798
        return inpL;
    }
1799

1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
    // build the input after conv2d (inp_raw --> patches)
    // returns tensor with shape [n_embd, n_patches]
    ggml_tensor * build_inp() {
        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
        inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
        inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
        if (model.patch_bias) {
            inp = ggml_add(ctx0, inp, model.patch_bias);
            cb(inp, "patch_bias", -1);
        }
        return inp;
    }
1813

1814
1815
    ggml_tensor * build_inp_raw(int channels = 3) {
        ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
1816
1817
1818
        ggml_set_name(inp_raw, "inp_raw");
        ggml_set_input(inp_raw);
        return inp_raw;
1819
1820
    }

1821
1822
1823
1824
1825
1826
1827
    ggml_tensor * build_norm(
            ggml_tensor * cur,
            ggml_tensor * mw,
            ggml_tensor * mb,
            norm_type type,
            float norm_eps,
            int il) const {
1828

1829
1830
1831
        cur = type == NORM_TYPE_RMS
            ? ggml_rms_norm(ctx0, cur, norm_eps)
            : ggml_norm(ctx0, cur, norm_eps);
1832

1833
1834
1835
        if (mw || mb) {
            cb(cur, "norm", il);
        }
1836

1837
1838
1839
1840
1841
        if (mw) {
            cur = ggml_mul(ctx0, cur, mw);
            if (mb) {
                cb(cur, "norm_w", il);
            }
1842
1843
        }

1844
1845
1846
        if (mb) {
            cur = ggml_add(ctx0, cur, mb);
        }
1847

1848
1849
        return cur;
    }
1850

1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
    ggml_tensor * build_ffn(
            ggml_tensor * cur,
            ggml_tensor * up,
            ggml_tensor * up_b,
            ggml_tensor * gate,
            ggml_tensor * gate_b,
            ggml_tensor * down,
            ggml_tensor * down_b,
            ffn_op_type type_op,
            int il) const {
1861

1862
1863
        ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
        cb(tmp, "ffn_up", il);
1864

1865
1866
1867
1868
        if (up_b) {
            tmp = ggml_add(ctx0, tmp, up_b);
            cb(tmp, "ffn_up_b", il);
        }
1869

1870
1871
1872
1873
1874
1875
1876
        if (gate) {
            cur = ggml_mul_mat(ctx0, gate, cur);
            cb(cur, "ffn_gate", il);

            if (gate_b) {
                cur = ggml_add(ctx0, cur, gate_b);
                cb(cur, "ffn_gate_b", il);
1877
            }
1878
1879
        } else {
            cur = tmp;
1880
1881
        }

1882
        // we only support parallel ffn for now
1883
1884
        switch (type_op) {
            case FFN_SILU:
1885
1886
1887
1888
                if (gate) {
                    cur = ggml_swiglu_split(ctx0, cur, tmp);
                    cb(cur, "ffn_swiglu", il);
                } else {
1889
1890
1891
1892
                    cur = ggml_silu(ctx0, cur);
                    cb(cur, "ffn_silu", il);
                } break;
            case FFN_GELU:
1893
1894
1895
1896
                if (gate) {
                    cur = ggml_geglu_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu", il);
                } else {
1897
1898
1899
                    cur = ggml_gelu(ctx0, cur);
                    cb(cur, "ffn_gelu", il);
                } break;
1900
1901
1902
1903
1904
1905
1906
1907
            case FFN_GELU_ERF:
                if (gate) {
                    cur = ggml_geglu_erf_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu_erf", il);
                } else {
                    cur = ggml_gelu_erf(ctx0, cur);
                    cb(cur, "ffn_gelu_erf", il);
                } break;
1908
            case FFN_GELU_QUICK:
1909
1910
1911
1912
                if (gate) {
                    cur = ggml_geglu_quick_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu_quick", il);
                } else {
1913
                    cur = ggml_gelu_quick(ctx0, cur);
1914
                    cb(cur, "ffn_gelu_quick", il);
1915
                } break;
1916
        }
1917
1918
1919

        if (down) {
            cur = ggml_mul_mat(ctx0, down, cur);
1920
        }
1921
1922
1923

        if (down_b) {
            cb(cur, "ffn_down", il);
1924
        }
1925
1926
1927

        if (down_b) {
            cur = ggml_add(ctx0, cur, down_b);
1928
        }
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974

        return cur;
    }

    ggml_tensor * build_attn(
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur,
            ggml_tensor * k_cur,
            ggml_tensor * v_cur,
            ggml_tensor * kq_mask,
            float kq_scale,
            int il) const {
        // these nodes are added to the graph together so that they are not reordered
        // by doing so, the number of splits in the graph is reduced
        ggml_build_forward_expand(gf, q_cur);
        ggml_build_forward_expand(gf, k_cur);
        ggml_build_forward_expand(gf, v_cur);

        ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
        //cb(q, "q", il);

        ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
        //cb(k, "k", il);

        ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
        v = ggml_cont(ctx0, v);
        //cb(k, "v", il);

        ggml_tensor * cur;

        // TODO @ngxson : support flash attention
        {
            const auto n_tokens = q->ne[1];
            const auto n_head   = q->ne[2];
            // const auto n_kv     = k->ne[1]; // for flash attention

            ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
            // F32 may not needed for vision encoders?
            // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

            kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);

            ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
            cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
            cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
1975
1976
        }

1977
        cb(cur, "kqv_out", il);
1978

1979
1980
        if (wo) {
            cur = ggml_mul_mat(ctx0, wo, cur);
1981
        }
1982

1983
1984
        if (wo_b) {
            cur = ggml_add(ctx0, cur, wo_b);
1985
        }
1986
1987

        return cur;
1988
    }
1989

1990
1991
1992
1993
1994
1995
    // implementation of the 2D RoPE without adding a new op in ggml
    // this is not efficient (use double the memory), but works on all backends
    // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
    static ggml_tensor * build_rope_2d(
        ggml_context * ctx0,
        ggml_tensor * cur,
1996
1997
1998
1999
        ggml_tensor * pos_a, // first half
        ggml_tensor * pos_b, // second half
        const float freq_base,
        const bool interleave_freq
2000
2001
2002
2003
    ) {
        const int64_t n_dim  = cur->ne[0];
        const int64_t n_head = cur->ne[1];
        const int64_t n_pos  = cur->ne[2];
2004

2005
2006
2007
2008
2009
2010
2011
2012
        // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
        // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
        // first half of cur will use 1e-0, 1e-2 (even)
        // second half of cur will use 1e-1, 1e-3 (odd)
        // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
        //  ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
        // then for the second half, we use freq_scale to shift the inv_freq
        //  ^ why? replace (2i) with (2i+1) in the above equation
2013
2014
2015
        const float freq_scale_odd = interleave_freq
                                    ? std::pow(freq_base, (float)-2/n_dim)
                                    : 1.0;
2016

2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
        // first half
        ggml_tensor * first;
        {
            first = ggml_view_3d(ctx0, cur,
                n_dim/2, n_head, n_pos,
                ggml_row_size(cur->type, n_dim),
                ggml_row_size(cur->type, n_dim*n_head),
                0);
            first = ggml_rope_ext(
                ctx0,
                first,
2028
                pos_a,      // positions
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
                nullptr,    // freq factors
                n_dim/2,    // n_dims
                0, 0, freq_base,
                1.0f, 0.0f, 1.0f, 0.0f, 0.0f
            );
        }

        // second half
        ggml_tensor * second;
        {
            second = ggml_view_3d(ctx0, cur,
                n_dim/2, n_head, n_pos,
                ggml_row_size(cur->type, n_dim),
                ggml_row_size(cur->type, n_dim*n_head),
                n_dim/2 * ggml_element_size(cur));
            second = ggml_rope_ext(
                ctx0,
                second,
2047
                pos_b,      // positions
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
                nullptr,    // freq factors
                n_dim/2,    // n_dims
                0, 0, freq_base,
                freq_scale_odd,
                0.0f, 1.0f, 0.0f, 0.0f
            );
        }

        cur = ggml_concat(ctx0, first, second, 0);
        return cur;
2058
    }
2059

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
    // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
    // support dynamic resolution
    ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
        GGML_ASSERT(scale_factor > 1);

        const int n_embd = cur->ne[0];
        int width  = img.nx / patch_size;
        int height = img.ny / patch_size;

        // pad width and height to factor
        const int64_t pad_width  = CLIP_ALIGN(width,  scale_factor) - width;
        const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
        cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
        if (pad_width || pad_height) {
            cur     = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
            width  += pad_width;
            height += pad_height;
        }

        // unshuffle h
        cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);

        // unshuffle w
        cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);

        cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
        cb(cur, "pixel_shuffle", -1);

        return cur;
    }

2093
};
2094

2095
2096
2097
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
    GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
    clip_graph graph(ctx, *imgs.entries[0]);
2098

2099
    ggml_cgraph * res;
2100

2101
    switch (ctx->proj_type()) {
2102
2103
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2104
        case PROJECTOR_TYPE_LFM2:
2105
            {
2106
                res = graph.build_siglip();
2107
2108
2109
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
            {
2110
                res = graph.build_pixtral();
2111
            } break;
2112
        case PROJECTOR_TYPE_QWEN2VL:
2113
2114
        case PROJECTOR_TYPE_QWEN25VL:
            {
2115
2116
2117
2118
2119
2120
2121
2122
2123
                res = graph.build_qwen2vl();
            } break;
        case PROJECTOR_TYPE_MINICPMV:
            {
                res = graph.build_minicpmv();
            } break;
        case PROJECTOR_TYPE_INTERNVL:
            {
                res = graph.build_internvl();
2124
            } break;
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
        case PROJECTOR_TYPE_LLAMA4:
            {
                res = graph.build_llama4();
            } break;
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_VOXTRAL:
        case PROJECTOR_TYPE_QWEN2A:
            {
                res = graph.build_whisper_enc();
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2135
2136
2137
2138
        case PROJECTOR_TYPE_KIMIVL:
            {
                res = graph.build_kimivl();
            } break;
2139
2140
        default:
            {
2141
                res = graph.build_llava();
2142
            } break;
2143
    }
2144
    return res;
2145
}
2146

2147
2148
2149
struct clip_model_loader {
    ggml_context_ptr ctx_meta;
    gguf_context_ptr ctx_gguf;
2150

2151
    std::string fname;
2152

2153
    size_t model_size = 0; // in bytes
2154

2155
2156
2157
2158
2159
    bool has_vision = false;
    bool has_audio  = false;

    // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
    clip_model_loader(const char * fname) : fname(fname) {
2160
2161
2162
2163
2164
2165
        struct ggml_context * meta = nullptr;

        struct gguf_init_params params = {
            /*.no_alloc = */ true,
            /*.ctx      = */ &meta,
        };
2166

2167
2168
2169
        ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
        if (!ctx_gguf.get()) {
            throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
2170
2171
        }

2172
        ctx_meta.reset(meta);
2173

2174
        const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
2175

2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
        // print gguf info
        {
            std::string name;
            get_string(KEY_NAME, name, false);
            std::string description;
            get_string(KEY_DESCRIPTION, description, false);
            LOG_INF("%s: model name:   %s\n",  __func__, name.c_str());
            LOG_INF("%s: description:  %s\n",  __func__, description.c_str());
            LOG_INF("%s: GGUF version: %d\n",  __func__, gguf_get_version(ctx_gguf.get()));
            LOG_INF("%s: alignment:    %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
            LOG_INF("%s: n_tensors:    %d\n",  __func__, n_tensors);
            LOG_INF("%s: n_kv:         %d\n",  __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
            LOG_INF("\n");
2189
2190
        }

2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
        // modalities
        {
            get_bool(KEY_HAS_VISION_ENC, has_vision, false);
            get_bool(KEY_HAS_AUDIO_ENC,  has_audio,  false);

            if (has_vision) {
                LOG_INF("%s: has vision encoder\n", __func__);
            }
            if (has_audio) {
                LOG_INF("%s: has audio encoder\n", __func__);
            }
        }

2204
2205
2206
2207
2208
2209
        // tensors
        {
            for (int i = 0; i < n_tensors; ++i) {
                const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
                const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
                enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
2210
                ggml_tensor * cur = ggml_get_tensor(meta, name);
2211
2212
2213
2214
                size_t tensor_size = ggml_nbytes(cur);
                model_size += tensor_size;
                LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
                    __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
2215
2216
2217
2218
            }
        }
    }

2219
2220
    void load_hparams(clip_model & model, clip_modality modality) {
        auto & hparams = model.hparams;
2221
        std::string log_ffn_op; // for logging
2222

2223
2224
2225
2226
2227
2228
2229
2230
2231
        // sanity check
        if (modality == CLIP_MODALITY_VISION) {
            GGML_ASSERT(has_vision);
        } else if (modality == CLIP_MODALITY_AUDIO) {
            GGML_ASSERT(has_audio);
        }
        model.modality = modality;


2232
        // projector type
2233
        std::string proj_type;
2234
2235
2236
        {
            get_string(KEY_PROJ_TYPE, proj_type, false);
            if (!proj_type.empty()) {
2237
                model.proj_type = clip_projector_type_from_string(proj_type);
2238
            }
2239
            if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
2240
                throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
2241
            }
2242
2243
2244
2245
2246
2247
2248

            // correct arch for multimodal models
            if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
                model.proj_type = modality == CLIP_MODALITY_VISION
                                    ? PROJECTOR_TYPE_QWEN25VL
                                    : PROJECTOR_TYPE_QWEN2A;
            }
2249
2250
        }

2251
2252
2253
        const bool is_vision = model.modality == CLIP_MODALITY_VISION;
        const bool is_audio  = model.modality == CLIP_MODALITY_AUDIO;

2254
2255
        // other hparams
        {
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
            const char * prefix = is_vision ? "vision" : "audio";
            get_u32(string_format(KEY_N_EMBD,         prefix), hparams.n_embd);
            get_u32(string_format(KEY_N_HEAD,         prefix), hparams.n_head);
            get_u32(string_format(KEY_N_FF,           prefix), hparams.n_ff);
            get_u32(string_format(KEY_N_BLOCK,        prefix), hparams.n_layer);
            get_u32(string_format(KEY_PROJ_DIM,       prefix), hparams.projection_dim);
            get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);

            if (is_vision) {
                get_u32(KEY_IMAGE_SIZE, hparams.image_size);
                get_u32(KEY_PATCH_SIZE, hparams.patch_size);
                get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
                get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
                get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
                if (hparams.minicpmv_query_num == 0) {
                    // Fallback to hardcoded values for legacy models
                    if (hparams.minicpmv_version == 3) {
                        hparams.minicpmv_query_num = 64;
                    } else if (hparams.minicpmv_version == 4) {
                        hparams.minicpmv_query_num = 64;
                    } else if (hparams.minicpmv_version == 5) {
                        hparams.minicpmv_query_num = 64;
                    } else if (hparams.minicpmv_version == 6) {
                        hparams.minicpmv_query_num = 64;
                    } else {
                        hparams.minicpmv_query_num = 96;
                    }
                }
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
            } else if (is_audio) {
                get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);

            } else {
                GGML_ASSERT(false && "unknown modality");
            }

            // for pinpoints, we need to convert it into a list of resolution candidates
            {
                std::vector<int> pinpoints;
                get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
                if (!pinpoints.empty()) {
                    for (size_t i = 0; i < pinpoints.size(); i += 2) {
                        hparams.image_res_candidates.push_back({
                            pinpoints[i],
                            pinpoints[i+1],
                        });
                    }
                }
            }
2304

2305
2306
2307
            // default warmup value
            hparams.warmup_image_size = hparams.image_size;

2308
2309
2310
2311
            hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
                                       || model.proj_type == PROJECTOR_TYPE_MLP_NORM
                                       || model.proj_type == PROJECTOR_TYPE_LDP
                                       || model.proj_type == PROJECTOR_TYPE_LDPV2;
2312

2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
            {
                bool use_gelu = false;
                bool use_silu = false;
                get_bool(KEY_USE_GELU, use_gelu, false);
                get_bool(KEY_USE_SILU, use_silu, false);
                if (use_gelu && use_silu) {
                    throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
                }
                if (use_gelu) {
                    hparams.ffn_op = FFN_GELU;
                    log_ffn_op = "gelu";
                } else if (use_silu) {
                    hparams.ffn_op = FFN_SILU;
                    log_ffn_op = "silu";
                } else {
                    hparams.ffn_op = FFN_GELU_QUICK;
                    log_ffn_op = "gelu_quick";
                }
            }

2333
2334
2335
2336
2337
2338
2339
            {
                std::string mm_patch_merge_type;
                get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
                if (mm_patch_merge_type == "spatial_unpad") {
                    hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
                }
            }
2340

2341
            if (is_vision) {
2342
2343
2344
2345
2346
2347
2348
                int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
                int idx_std  = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
                GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
                GGML_ASSERT(idx_std >= 0  && "image_std not found");
                const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
                const float * std_data  = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
                for (int i = 0; i < 3; ++i) {
2349
2350
                    hparams.image_mean[i] = mean_data[i];
                    hparams.image_std[i]  = std_data[i];
2351
                }
2352
2353
            }

2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
            // Load the vision feature layer indices if they are explicitly provided;
            // if multiple vision feature layers are present, the values will be concatenated
            // to form the final visual features.
            // NOTE: gguf conversions should standardize the values of the vision feature layer to
            // be non-negative, since we use -1 to mark values as unset here.
            std::vector<int> vision_feature_layer;
            get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
            // convert std::vector to std::unordered_set
            for (auto & layer : vision_feature_layer) {
                hparams.vision_feature_layer.insert(layer);
            }
2365
2366

            // model-specific params
2367
            switch (model.proj_type) {
2368
2369
                case PROJECTOR_TYPE_MINICPMV:
                    {
2370
2371
                        if (hparams.minicpmv_version == 0) {
                            hparams.minicpmv_version = 2; // default to 2 if not set
2372
2373
2374
                        }
                    } break;
                case PROJECTOR_TYPE_IDEFICS3:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2375
                case PROJECTOR_TYPE_LFM2:
2376
                case PROJECTOR_TYPE_INTERNVL:
2377
2378
2379
2380
2381
2382
                    {
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
                    } break;
                case PROJECTOR_TYPE_PIXTRAL:
                    {
                        hparams.rope_theta = 10000.0f;
2383
                        hparams.warmup_image_size = hparams.patch_size * 8;
2384
2385
2386
                        // Mistral Small 2506 needs 1024x1024 image size cap to prevent OOM
                        // ref: https://github.com/ggml-org/llama.cpp/issues/14310
                        hparams.image_size = 1024;
2387
2388
                        get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
                    } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2389
2390
2391
2392
2393
2394
                case PROJECTOR_TYPE_KIMIVL:
                    {
                        hparams.rope_theta = 10000.0f;
                        hparams.warmup_image_size = hparams.patch_size * 8;
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
                    } break;
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
                case PROJECTOR_TYPE_GEMMA3:
                    {
                        // default value (used by all model sizes in gemma 3 family)
                        // number of patches for each **side** is reduced by a factor of 4
                        hparams.proj_scale_factor = 4;
                        // test model (tinygemma3) has a different value, we optionally read it
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
                    } break;
                case PROJECTOR_TYPE_QWEN2VL:
                    {
                        // max image size = sqrt(max_pixels) = 3584
                        // ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
                        // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
                        // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
                        hparams.image_size = 1024;
                        hparams.warmup_image_size = hparams.patch_size * 8;
2411
2412
2413
                    } break;
                case PROJECTOR_TYPE_QWEN25VL:
                    {
2414
2415
2416
2417
2418
2419
                        // max image size = sqrt(max_pixels)
                        // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
                        // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
                        // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
                        hparams.image_size = 1024;
                        hparams.warmup_image_size = hparams.patch_size * 8;
2420
2421
                        get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
                    } break;
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
                case PROJECTOR_TYPE_LLAMA4:
                    {
                        hparams.rope_theta = 10000.0f;
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
                        set_llava_uhd_res_candidates(model, 3);
                    } break;
                case PROJECTOR_TYPE_ULTRAVOX:
                case PROJECTOR_TYPE_QWEN2A:
                case PROJECTOR_TYPE_VOXTRAL:
                    {
                        bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
                                             model.proj_type == PROJECTOR_TYPE_VOXTRAL;
                        get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
                        if (hparams.n_mel_bins != 128) {
                            throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
                        }
                        hparams.ffn_op = FFN_GELU_ERF;
                        log_ffn_op = "gelu_erf"; // temporary solution for logging
                    } break;
2441
2442
2443
                default:
                    break;
            }
2444

2445
            LOG_INF("%s: projector:          %s\n", __func__, proj_type.c_str());
2446
2447
2448
2449
            LOG_INF("%s: n_embd:             %d\n", __func__, hparams.n_embd);
            LOG_INF("%s: n_head:             %d\n", __func__, hparams.n_head);
            LOG_INF("%s: n_ff:               %d\n", __func__, hparams.n_ff);
            LOG_INF("%s: n_layer:            %d\n", __func__, hparams.n_layer);
2450
            LOG_INF("%s: ffn_op:             %s\n", __func__, log_ffn_op.c_str());
2451
            LOG_INF("%s: projection_dim:     %d\n", __func__, hparams.projection_dim);
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
            if (is_vision) {
                LOG_INF("\n--- vision hparams ---\n");
                LOG_INF("%s: image_size:         %d\n", __func__, hparams.image_size);
                LOG_INF("%s: patch_size:         %d\n", __func__, hparams.patch_size);
                LOG_INF("%s: has_llava_proj:     %d\n", __func__, hparams.has_llava_projector);
                LOG_INF("%s: minicpmv_version:   %d\n", __func__, hparams.minicpmv_version);
                LOG_INF("%s: proj_scale_factor:  %d\n", __func__, hparams.proj_scale_factor);
                LOG_INF("%s: n_wa_pattern:       %d\n", __func__, hparams.n_wa_pattern);
            } else if (is_audio) {
                LOG_INF("\n--- audio hparams ---\n");
                LOG_INF("%s: n_mel_bins:         %d\n", __func__, hparams.n_mel_bins);
                LOG_INF("%s: proj_stack_factor:  %d\n", __func__, hparams.proj_stack_factor);
            }
2465
            LOG_INF("\n");
2466
2467
2468
2469
            LOG_INF("%s: model size:         %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
            LOG_INF("%s: metadata size:      %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
        }
    }
2470

2471
2472
2473
    void load_tensors(clip_ctx & ctx_clip) {
        auto & model = ctx_clip.model;
        auto & hparams = model.hparams;
2474
2475
        std::map<std::string, size_t> tensor_offset;
        std::vector<ggml_tensor *> tensors_to_load;
2476

2477
2478
2479
        // TODO @ngxson : support both audio and video in the future
        const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";

2480
2481
2482
2483
        // get offsets
        for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
            const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
            tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
2484
2485
        }

2486
2487
        // create data context
        struct ggml_init_params params = {
2488
            /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
2489
2490
2491
2492
2493
2494
            /*.mem_buffer =*/ NULL,
            /*.no_alloc =*/ true,
        };
        ctx_clip.ctx_data.reset(ggml_init(params));
        if (!ctx_clip.ctx_data) {
            throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
2495
2496
        }

2497
2498
        // helper function
        auto get_tensor = [&](const std::string & name, bool required = true) {
2499
            ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
2500
2501
2502
2503
2504
2505
            if (!cur && required) {
                throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
            }
            if (cur) {
                tensors_to_load.push_back(cur);
                // add tensors to context
2506
                ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
2507
2508
2509
2510
2511
                ggml_set_name(data_tensor, cur->name);
                cur = data_tensor;
            }
            return cur;
        };
2512

2513
        model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
2514

2515
2516
        model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
        model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"),   false);
2517

2518
2519
        model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
        model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"),   false);
2520

2521
2522
2523
        model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
        model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD,   false);
        model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
2524

2525
        model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
2526

2527
        // layers
2528
        model.layers.resize(hparams.n_layer);
2529
        for (int il = 0; il < hparams.n_layer; ++il) {
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
            auto & layer = model.layers[il];
            layer.k_w    = get_tensor(string_format(TN_ATTN_K,      prefix, il, "weight"));
            layer.q_w    = get_tensor(string_format(TN_ATTN_Q,      prefix, il, "weight"));
            layer.v_w    = get_tensor(string_format(TN_ATTN_V,      prefix, il, "weight"));
            layer.o_w    = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
            layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
            layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
            layer.ln_1_w = get_tensor(string_format(TN_LN_1,        prefix, il, "weight"), false);
            layer.ln_2_w = get_tensor(string_format(TN_LN_2,        prefix, il, "weight"), false);
            layer.ls_1_w = get_tensor(string_format(TN_LS_1,        prefix, il, "weight"), false); // no bias
            layer.ls_2_w = get_tensor(string_format(TN_LS_2,        prefix, il, "weight"), false); // no bias

            layer.k_b    = get_tensor(string_format(TN_ATTN_K,      prefix, il, "bias"), false);
            layer.q_b    = get_tensor(string_format(TN_ATTN_Q,      prefix, il, "bias"), false);
            layer.v_b    = get_tensor(string_format(TN_ATTN_V,      prefix, il, "bias"), false);
            layer.o_b    = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
            layer.ln_1_b = get_tensor(string_format(TN_LN_1,        prefix, il, "bias"), false);
            layer.ln_2_b = get_tensor(string_format(TN_LN_2,        prefix, il, "bias"), false);
2548

2549
            // ffn
2550
2551
2552
2553
2554
2555
            layer.ff_up_w   = get_tensor(string_format(TN_FFN_UP,   prefix, il, "weight"));
            layer.ff_up_b   = get_tensor(string_format(TN_FFN_UP,   prefix, il, "bias"),   false);
            layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
            layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"),   false);
            layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
            layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"),   false);
2556

2557
2558
            // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
            // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
            bool is_ffn_swapped = (
                    // only old models need this fix
                    model.proj_type == PROJECTOR_TYPE_MLP
                    || model.proj_type == PROJECTOR_TYPE_MLP_NORM
                    || model.proj_type == PROJECTOR_TYPE_LDP
                    || model.proj_type == PROJECTOR_TYPE_LDPV2
                    || model.proj_type == PROJECTOR_TYPE_QWEN2VL
                    || model.proj_type == PROJECTOR_TYPE_QWEN25VL
                    || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
                    || model.proj_type == PROJECTOR_TYPE_GEMMA3
                    || model.proj_type == PROJECTOR_TYPE_IDEFICS3
                    || model.proj_type == PROJECTOR_TYPE_MINICPMV
                ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
            if (is_ffn_swapped) {
2573
2574
2575
2576
2577
2578
2579
2580
                // swap up and down weights
                ggml_tensor * tmp = layer.ff_up_w;
                layer.ff_up_w = layer.ff_down_w;
                layer.ff_down_w = tmp;
                // swap up and down biases
                tmp = layer.ff_up_b;
                layer.ff_up_b = layer.ff_down_b;
                layer.ff_down_b = tmp;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2581
2582
2583
                if (il == 0) {
                    LOG_WRN("%s: ffn up/down are swapped\n", __func__);
                }
2584
            }
2585
2586
        }

2587
        switch (model.proj_type) {
2588
2589
2590
2591
            case PROJECTOR_TYPE_MLP:
            case PROJECTOR_TYPE_MLP_NORM:
                {
                    // LLaVA projection
2592
2593
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
2594
                    // Yi-type llava
2595
2596
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
2597
                    // missing in Yi-type llava
2598
2599
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
2600
                    // Yi-type llava
2601
2602
2603
2604
2605
                    model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
                    model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
                    model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
                    model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
                    if (model.mm_3_w) {
2606
                        // TODO: this is a hack to support Yi-type llava
2607
                        model.proj_type = PROJECTOR_TYPE_MLP_NORM;
2608
                    }
2609
                    model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
2610
2611
2612
2613
                } break;
            case PROJECTOR_TYPE_LDP:
                {
                    // MobileVLM projection
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
                    model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
                    model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
                    model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
                    model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
                    model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
                    model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
                    model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
                    model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
                    model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
                    model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
                    model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
                    model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
                    model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
                    model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
                    model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
                    model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
                    model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
                    model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
                    model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
                    model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
2638
2639
2640
2641
                } break;
            case PROJECTOR_TYPE_LDPV2:
                {
                    // MobilVLM_V2 projection
2642
2643
2644
2645
2646
2647
                    model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
                    model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
                    model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
                    model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
2648
                } break;
2649
            case PROJECTOR_TYPE_MINICPMV:
2650
                {
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
                    // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
                    model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
                    model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
                    model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
                    model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
                    model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
                    model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
                    model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
                    model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
                    model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
                    model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
                    model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
                    model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
                    model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
                    model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
                    model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
                    model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
                    model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
                    model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
2670
2671
2672
                } break;
            case PROJECTOR_TYPE_GLM_EDGE:
                {
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
                    model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
                    model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
                    model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
                    model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
                    model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
                    model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
                    model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
                    model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
2683
                } break;
2684
2685
            case PROJECTOR_TYPE_QWEN2VL:
            case PROJECTOR_TYPE_QWEN25VL:
2686
                {
2687
2688
2689
2690
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
2691
2692
2693
                } break;
            case PROJECTOR_TYPE_GEMMA3:
                {
2694
2695
                    model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
                    model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
2696
                } break;
2697
2698
            case PROJECTOR_TYPE_IDEFICS3:
                {
2699
                    model.projection = get_tensor(TN_MM_PROJECTOR);
2700
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
            case PROJECTOR_TYPE_LFM2:
            case PROJECTOR_TYPE_KIMIVL:
                {
                    model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
                    model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
                } break;
2711
2712
            case PROJECTOR_TYPE_PIXTRAL:
                {
2713
2714
2715
2716
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
2717
                    // [IMG_BREAK] token embedding
2718
                    model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
2719
                    // for mistral small 3.1
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
                    model.mm_input_norm_w   = get_tensor(TN_MM_INP_NORM,     false);
                    model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
                } break;
            case PROJECTOR_TYPE_ULTRAVOX:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
                    model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
                    model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
                    model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
                } break;
            case PROJECTOR_TYPE_QWEN2A:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
                    model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
                } break;
            case PROJECTOR_TYPE_VOXTRAL:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
                    model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
2751
2752
2753
                } break;
            case PROJECTOR_TYPE_INTERNVL:
                {
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
                    model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
                } break;
            case PROJECTOR_TYPE_LLAMA4:
                {
                    model.mm_model_proj    = get_tensor(TN_MM_PROJECTOR);
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
2766
                } break;
2767
2768
2769
            default:
                GGML_ASSERT(false && "unknown projector type");
        }
2770

2771
2772
2773
        // load data
        {
            std::vector<uint8_t> read_buf;
2774
2775

#ifdef _WIN32
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
            int wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, NULL, 0);
            if (!wlen) {
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
            wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
            wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, wbuf, wlen);
            if (!wlen) {
                free(wbuf);
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
2786
#if __GLIBCXX__
2787
2788
2789
            int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
            __gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
            std::istream fin(&buffer);
2790
#else // MSVC
2791
2792
            // unused in our current build
            auto fin = std::ifstream(wbuf, std::ios::binary);
2793
#endif
2794
            free(wbuf);
2795
#else
2796
            auto fin = std::ifstream(fname, std::ios::binary);
2797
2798
#endif
            if (!fin) {
2799
                throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
2800
            }
2801
2802
2803
2804
2805
2806

            // alloc memory and offload data
            ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
            ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
            ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
            for (auto & t : tensors_to_load) {
2807
                ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
                const size_t offset = tensor_offset[t->name];
                fin.seekg(offset, std::ios::beg);
                if (!fin) {
                    throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
                }
                size_t num_bytes = ggml_nbytes(cur);
                if (ggml_backend_buft_is_host(buft)) {
                    // for the CPU and Metal backend, we can read directly into the tensor
                    fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
                } else {
                    // read into a temporary buffer first, then copy to device memory
                    read_buf.resize(num_bytes);
                    fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
                    ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
                }
2823
2824
            }
#if defined(_WIN32) && defined(__GLIBCXX__)
2825
            close(fd);
2826
#else
2827
            fin.close();
2828
#endif
2829
2830
2831

            LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
        }
2832
2833
    }

2834
2835
    void alloc_compute_meta(clip_ctx & ctx_clip) {
        const auto & hparams = ctx_clip.model.hparams;
2836
        ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
2837
2838
2839
2840

        // create a fake batch
        clip_image_f32_batch batch;
        clip_image_f32_ptr img(clip_image_f32_init());
2841
2842
2843
2844
2845
2846
2847
        if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
            img->nx = hparams.warmup_image_size;
            img->ny = hparams.warmup_image_size;
        } else {
            img->nx = hparams.warmup_audio_size;
            img->ny = hparams.n_mel_bins;
        }
2848
2849
        batch.entries.push_back(std::move(img));

2850
        ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
2851
        ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
2852

2853
2854
2855
2856
2857
2858
2859
2860
        for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
            ggml_backend_t backend = ctx_clip.backend_ptrs[i];
            ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
            size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
            if (size > 1) {
                LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
                        ggml_backend_buft_name(buft),
                        size / 1024.0 / 1024.0);
2861
            }
2862
2863
        }
    }
2864

2865
2866
2867
2868
2869
2870
2871
2872
    void get_bool(const std::string & key, bool & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_bool(ctx_gguf.get(), i);
    }
2873

2874
2875
2876
2877
2878
2879
2880
2881
    void get_i32(const std::string & key, int & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_i32(ctx_gguf.get(), i);
    }
2882

2883
2884
2885
2886
2887
    void get_u32(const std::string & key, int & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
2888
        }
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
        output = gguf_get_val_u32(ctx_gguf.get(), i);
    }

    void get_f32(const std::string & key, float & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        output = gguf_get_val_f32(ctx_gguf.get(), i);
    }

    void get_string(const std::string & key, std::string & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
2906
        }
2907
2908
        output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
    }
2909

2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
    void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
            if (required) throw std::runtime_error("Key not found: " + key);
            return;
        }
        int n = gguf_get_arr_n(ctx_gguf.get(), i);
        output.resize(n);
        const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
        for (int i = 0; i < n; ++i) {
            output[i] = values[i];
        }
    }
2923

2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
    void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
        auto & hparams = model.hparams;
        for (int x = 1; x <= max_patches_per_side; x++) {
            for (int y = 1; y <= max_patches_per_side; y++) {
                if (x == 1 && y == 1) {
                    continue; // skip the first point
                }
                hparams.image_res_candidates.push_back(clip_image_size{
                    x*hparams.image_size,
                    y*hparams.image_size,
                });
            }
        }
    }
};
2939

2940
struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
2941
    g_logger_state.verbosity_thold = ctx_params.verbosity;
2942
2943
    clip_ctx * ctx_vision = nullptr;
    clip_ctx * ctx_audio = nullptr;
2944
2945

    try {
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
        clip_model_loader loader(fname);

        if (loader.has_vision) {
            ctx_vision = new clip_ctx(ctx_params);
            loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
            loader.load_tensors(*ctx_vision);
            loader.alloc_compute_meta(*ctx_vision);
        }

        if (loader.has_audio) {
            ctx_audio = new clip_ctx(ctx_params);
            loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
            loader.load_tensors(*ctx_audio);
            loader.alloc_compute_meta(*ctx_audio);
        }

2962
2963
    } catch (const std::exception & e) {
        LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
2964
2965
2966
2967
2968
2969
2970
        if (ctx_vision) {
            delete ctx_vision;
        }
        if (ctx_audio) {
            delete ctx_audio;
        }
        return {nullptr, nullptr};
2971
2972
    }

2973
    return {ctx_vision, ctx_audio};
2974
2975
}

2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
struct clip_image_size * clip_image_size_init() {
    struct clip_image_size * load_image_size = new struct clip_image_size();
    load_image_size->width = 448;
    load_image_size->height = 448;
    return load_image_size;
}

struct clip_image_u8 * clip_image_u8_init() {
    return new clip_image_u8();
}

struct clip_image_f32 * clip_image_f32_init() {
    return new clip_image_f32();
}

2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
struct clip_image_f32_batch * clip_image_f32_batch_init() {
    return new clip_image_f32_batch();
}

unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
    if (nx) *nx = img->nx;
    if (ny) *ny = img->ny;
    return img->buf.data();
}

void clip_image_size_free(struct clip_image_size * load_image_size) {
    if (load_image_size == nullptr) {
        return;
    }
    delete load_image_size;
}
void clip_image_u8_free(struct clip_image_u8  * img) { if (img) delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }

size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
    return batch->entries.size();
}

size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
    }
    return batch->entries[idx]->nx;
}

size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
3028
    }
3029
    return batch->entries[idx]->ny;
3030
}
3031
3032
3033
3034
3035

clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return nullptr;
3036
    }
3037
    return batch->entries[idx].get();
3038
3039
}

3040
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
3041
3042
3043
    img->nx = nx;
    img->ny = ny;
    img->buf.resize(3 * nx * ny);
3044
    memcpy(img->buf.data(), rgb_pixels, img->buf.size());
3045
3046
3047
}

// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
3048
3049
3050
3051
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(src.buf.size());
3052

3053
3054
    // TODO @ngxson : seems like this could be done more efficiently on cgraph
    for (size_t i = 0; i < src.buf.size(); ++i) {
3055
        int c = i % 3; // rgb
3056
        dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
3057
3058
3059
    }
}

3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
// set of tools to manupulate images
// in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
struct image_manipulation {
    // Bilinear resize function
    static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float x_ratio = static_cast<float>(src.nx - 1) / target_width;
        float y_ratio = static_cast<float>(src.ny - 1) / target_height;

        for (int y = 0; y < target_height; y++) {
            for (int x = 0; x < target_width; x++) {
                float px = x_ratio * x;
                float py = y_ratio * y;
                int x_floor = static_cast<int>(px);
                int y_floor = static_cast<int>(py);
                float x_lerp = px - x_floor;
                float y_lerp = py - y_floor;

                for (int c = 0; c < 3; c++) {
                    float top = lerp(
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    float bottom = lerp(
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
                }
            }
        }
    }
3097

3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
    // Bicubic resize function
    // part of image will be cropped if the aspect ratio is different
    static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
        const int nx = img.nx;
        const int ny = img.ny;

        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float Cc;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3109
        float C[5] = {};
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
        float d0, d2, d3, a0, a1, a2, a3;
        int i, j, k, jj;
        int x, y;
        float dx, dy;
        float tx, ty;

        tx = (float)nx / (float)target_width;
        ty = (float)ny / (float)target_height;

        // Bicubic interpolation; adapted from ViT.cpp, inspired from :
        //    -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
        //    -> https://en.wikipedia.org/wiki/Bicubic_interpolation

        for (i = 0; i < target_height; i++) {
            for (j = 0; j < target_width; j++) {
                x = (int)(tx * j);
                y = (int)(ty * i);

                dx = tx * j - x;
                dy = ty * i - y;

                for (k = 0; k < 3; k++) {
                    for (jj = 0; jj <= 3; jj++) {
                        d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];

                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;

                        C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;

                        d0 = C[0] - C[1];
                        d2 = C[2] - C[1];
                        d3 = C[3] - C[1];
                        a0 = C[1];
                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;
                        Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;

                        const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
                        dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
                    }
3156
3157
3158
                }
            }
        }
3159
3160

        return true;
3161
3162
    }

3163
3164
3165
3166
3167
3168
    // llava-1.6 type of resize_and_pad
    // if the ratio is not 1:1, padding with pad_color will be applied
    // pad_color is single channel, default is 0 (black)
    static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
        int target_width  = target_resolution.width;
        int target_height = target_resolution.height;
3169

3170
3171
        float scale_w = static_cast<float>(target_width) / image.nx;
        float scale_h = static_cast<float>(target_height) / image.ny;
3172

3173
        int new_width, new_height;
3174

3175
3176
3177
3178
3179
3180
3181
        if (scale_w < scale_h) {
            new_width  = target_width;
            new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
        } else {
            new_height = target_height;
            new_width  = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
        }
3182

3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
        clip_image_u8 resized_image;
        bicubic_resize(image, resized_image, new_width, new_height);

        clip_image_u8 padded_image;
        padded_image.nx = target_width;
        padded_image.ny = target_height;
        padded_image.buf.resize(3 * target_width * target_height);

        // Fill the padded image with the fill color
        for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
            padded_image.buf[i]     = pad_color[0];
            padded_image.buf[i + 1] = pad_color[1];
            padded_image.buf[i + 2] = pad_color[2];
        }
3197

3198
3199
3200
        // Calculate padding offsets
        int pad_x = (target_width  - new_width)  / 2;
        int pad_y = (target_height - new_height) / 2;
3201

3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
        // Copy the resized image into the center of the padded buffer
        for (int y = 0; y < new_height; ++y) {
            for (int x = 0; x < new_width; ++x) {
                for (int c = 0; c < 3; ++c) {
                    padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
                }
            }
        }
        dst = std::move(padded_image);
    }
3212

3213
3214
3215
3216
    static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
        dst.nx = w;
        dst.ny = h;
        dst.buf.resize(3 * w * h);
3217

3218
3219
3220
3221
3222
3223
3224
        for (int i = 0; i < h; ++i) {
            for (int j = 0; j < w; ++j) {
                int src_idx = 3 * ((y + i)*image.nx + (x + j));
                int dst_idx = 3 * (i*w + j);
                dst.buf[dst_idx]     = image.buf[src_idx];
                dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
                dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
3225
3226
3227
            }
        }
    }
3228

3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
    // calculate the size of the **resized** image, while preserving the aspect ratio
    // the calculated size will be aligned to the nearest multiple of align_size
    // if H or W size is larger than max_dimension, it will be resized to max_dimension
    static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
        if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
            return {0, 0};
        }

        float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
                                              static_cast<float>(max_dimension) / inp_size.height));

        float target_width_f  = static_cast<float>(inp_size.width)  * scale;
        float target_height_f = static_cast<float>(inp_size.height) * scale;

3243
3244
        int aligned_width  = CLIP_ALIGN((int)target_width_f,  align_size);
        int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
3245
3246
3247
3248

        return {aligned_width, aligned_height};
    }

3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
private:
    static inline int clip(int x, int lower, int upper) {
        return std::max(lower, std::min(x, upper));
    }

    // Linear interpolation between two points
    static inline float lerp(float s, float e, float t) {
        return s + (e - s) * t;
    }
};
3259
3260

/**
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
 * implementation of LLaVA-UHD:
 *  - https://arxiv.org/pdf/2403.11703
 *  - https://github.com/thunlp/LLaVA-UHD
 *  - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
 *
 * overview:
 *   - an image always have a single overview (downscaled image)
 *   - an image can have 0 or multiple slices, depending on the image size
 *   - each slice can then be considered as a separate image
 *
 * for example:
3272
 *
3273
3274
3275
 * [overview] --> [slice 1] --> [slice 2]
 *           |                |
 *           +--> [slice 3] --> [slice 4]
3276
 */
3277
3278
3279
3280
3281
3282
struct llava_uhd {
    struct slice_coordinates {
        int x;
        int y;
        clip_image_size size;
    };
3283

3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
    struct slice_instructions {
        clip_image_size overview_size; // size of downscaled image
        clip_image_size refined_size;  // size of image right before slicing (must be multiple of slice size)
        clip_image_size grid_size;     // grid_size.width * grid_size.height = number of slices
        std::vector<slice_coordinates> slices;
        bool padding_refined = false;  // if true, refine image will be padded to the grid size (e.g. llava-1.6)
    };

    static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
        slice_instructions res;
        const int patch_size      = clip_get_patch_size(ctx);
        const int slice_size      = clip_get_image_size(ctx);
        const int original_width  = original_size.width;
        const int original_height = original_size.height;
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309

        const bool has_slices    = original_size.width > slice_size || original_size.height > slice_size;
        const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();

        if (!has_slices) {
            // skip slicing logic
            res.overview_size = clip_image_size{slice_size, slice_size};
            res.refined_size  = clip_image_size{0, 0};
            res.grid_size     = clip_image_size{0, 0};

            return res;
        }
3310
3311
3312
3313

        if (has_pinpoints) {
            // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
            auto refine_size = llava_uhd::select_best_resolution(
3314
3315
                original_size,
                ctx->model.hparams.image_res_candidates);
3316
3317
3318
3319
3320
            res.overview_size   = clip_image_size{slice_size, slice_size};
            res.refined_size    = refine_size;
            res.grid_size       = clip_image_size{0, 0};
            res.padding_refined = true;

3321
3322
3323
3324
3325
3326
            LOG_DBG("%s: using pinpoints for slicing\n", __func__);
            LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
                    __func__, original_width, original_height,
                    res.overview_size.width, res.overview_size.height,
                    res.refined_size.width,  res.refined_size.height);

3327
3328
3329
3330
3331
3332
3333
3334
            for (int y = 0; y < refine_size.height; y += slice_size) {
                for (int x = 0; x < refine_size.width; x += slice_size) {
                    slice_coordinates slice;
                    slice.x = x;
                    slice.y = y;
                    slice.size.width  = std::min(slice_size, refine_size.width  - x);
                    slice.size.height = std::min(slice_size, refine_size.height - y);
                    res.slices.push_back(slice);
3335
3336
3337
                    LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
                            __func__, (int)res.slices.size() - 1,
                            slice.x, slice.y, slice.size.width, slice.size.height);
3338
3339
                }
            }
3340

3341
3342
3343
3344
            res.grid_size.height = refine_size.height / slice_size;
            res.grid_size.width  = refine_size.width  / slice_size;
            LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);

3345
            return res;
3346
3347
        }

3348
        // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
3349

3350
        auto best_size    = get_best_resize(original_size, slice_size, patch_size, !has_slices);
3351
        res.overview_size = best_size;
3352

3353
3354
3355
3356
3357
        {
            const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
            const float log_ratio = log((float)original_width / original_height);
            const float ratio = (float)original_width * original_height / (slice_size * slice_size);
            const int multiple = fmin(ceil(ratio), max_slice_nums);
3358

3359
3360
3361
3362
3363
            auto best_grid   = get_best_grid(max_slice_nums, multiple, log_ratio);
            auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
            res.grid_size    = best_grid;
            res.refined_size = refine_size;

3364
3365
3366
3367
3368
3369
            LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
                    __func__, original_width, original_height,
                    res.overview_size.width, res.overview_size.height,
                    res.refined_size.width, res.refined_size.height,
                    res.grid_size.width, res.grid_size.height);

3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
            int width  = refine_size.width;
            int height = refine_size.height;
            int grid_x = int(width  / best_grid.width);
            int grid_y = int(height / best_grid.height);
            for (int patches_y = 0,                    ic = 0;
                    patches_y < refine_size.height && ic < best_grid.height;
                    patches_y += grid_y,              ic += 1) {
                for (int patches_x = 0,                   jc = 0;
                        patches_x < refine_size.width && jc < best_grid.width;
                        patches_x += grid_x,             jc += 1) {
                    slice_coordinates slice;
                    slice.x = patches_x;
                    slice.y = patches_y;
                    slice.size.width  = grid_x;
                    slice.size.height = grid_y;
                    res.slices.push_back(slice);
3386
3387
3388
                    LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
                            __func__, (int)res.slices.size() - 1,
                            slice.x, slice.y, slice.size.width, slice.size.height);
3389
3390
3391
                }
            }
        }
3392

3393
3394
        return res;
    }
3395

3396
3397
    static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
        std::vector<clip_image_u8_ptr> output;
3398

3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
        // resize to overview size
        clip_image_u8_ptr resized_img(clip_image_u8_init());
        image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
        output.push_back(std::move(resized_img));
        if (inst.slices.empty()) {
            // no slices, just return the resized image
            return output;
        }

        // resize to refined size
        clip_image_u8_ptr refined_img(clip_image_u8_init());
        if (inst.padding_refined) {
            image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
        } else {
            image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
        }
3415

3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
        // create slices
        for (const auto & slice : inst.slices) {
            int x = slice.x;
            int y = slice.y;
            int w = slice.size.width;
            int h = slice.size.height;

            clip_image_u8_ptr img_slice(clip_image_u8_init());
            image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
            output.push_back(std::move(img_slice));
3426
        }
3427
3428

        return output;
3429
3430
    }

3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
private:
    static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
            float r = static_cast<float>(width) / height;
            height  = static_cast<int>(scale_resolution / std::sqrt(r));
            width   = static_cast<int>(height * r);
        }
        clip_image_size res;
        res.width  = ensure_divide(width,  patch_size);
        res.height = ensure_divide(height, patch_size);
        return res;
    }

3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
    static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
        float scale_width  = static_cast<float>(target_max.width)  / orig.width;
        float scale_height = static_cast<float>(target_max.height) / orig.height;
        float scale = std::min(scale_width, scale_height);
        return clip_image_size{
            static_cast<int>(orig.width  * scale),
            static_cast<int>(orig.height * scale),
        };
    }

3456
3457
3458
    /**
     * Selects the best resolution from a list of possible resolutions based on the original size.
     *
3459
3460
3461
3462
3463
3464
3465
3466
     * For example, when given a list of resolutions:
     *  - 100x100
     *  - 200x100
     *  - 100x200
     *  - 200x200
     *
     * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
     *
3467
3468
3469
3470
3471
3472
     * @param original_size The original size of the image
     * @param possible_resolutions A list of possible resolutions
     * @return The best fit resolution
     */
    static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
        clip_image_size best_fit;
3473
        int min_wasted_area = std::numeric_limits<int>::max();
3474
        int max_effective_resolution = 0;
3475
3476
3477
3478
3479
3480
3481
3482
3483

        for (const clip_image_size & candidate : possible_resolutions) {
            auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
            int effective_resolution = std::min(
                target_size.width * target_size.height,
                original_size.width * original_size.height);
            int wasted_area = (candidate.width * candidate.height) - effective_resolution;

            if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
3484
                max_effective_resolution = effective_resolution;
3485
3486
                min_wasted_area = wasted_area;
                best_fit = candidate;
3487
            }
3488
3489

            LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
3490
        }
3491
3492

        return best_fit;
3493
3494
    }

3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
    static int ensure_divide(int length, int patch_size) {
        return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
    }

    static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        int grid_x = grid.width;
        int grid_y = grid.height;

        int refine_width  = ensure_divide(width, grid_x);
        int refine_height = ensure_divide(height, grid_y);

        clip_image_size grid_size;
        grid_size.width  = refine_width  / grid_x;
        grid_size.height = refine_height / grid_y;

        auto best_grid_size  = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
        int best_grid_width  = best_grid_size.width;
        int best_grid_height = best_grid_size.height;

        clip_image_size refine_size;
        refine_size.width  = best_grid_width  * grid_x;
        refine_size.height = best_grid_height * grid_y;
        return refine_size;
    }

    static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
        std::vector<int> candidate_split_grids_nums;
        for (int i : {multiple - 1, multiple, multiple + 1}) {
            if (i == 1 || i > max_slice_nums) {
                continue;
            }
            candidate_split_grids_nums.push_back(i);
        }

        std::vector<clip_image_size> candidate_grids;
        for (int split_grids_nums : candidate_split_grids_nums) {
            int m = 1;
            while (m <= split_grids_nums) {
                if (split_grids_nums % m == 0) {
                    candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
3537
                }
3538
                ++m;
3539
3540
            }
        }
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551

        clip_image_size best_grid{1, 1};
        float min_error = std::numeric_limits<float>::infinity();
        for (const auto& grid : candidate_grids) {
            float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
            if (error < min_error) {
                best_grid = grid;
                min_error = error;
            }
        }
        return best_grid;
3552
    }
3553
};
3554
3555
3556

// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
3557
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
3558
3559
    clip_image_size original_size{img->nx, img->ny};
    bool pad_to_square = true;
3560
    auto & params = ctx->model.hparams;
3561
3562
3563
3564
    // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
    if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
        pad_to_square = false;
    }
3565

3566
    if (clip_is_minicpmv(ctx)) {
3567
3568
3569
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

3570
        for (size_t i = 0; i < imgs.size(); ++i) {
3571
3572
            // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
            clip_image_f32_ptr res(clip_image_f32_init());
3573
            normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
3574
            res_imgs->entries.push_back(std::move(res));
3575
        }
3576
3577
3578

        res_imgs->grid_x = inst.grid_size.width;
        res_imgs->grid_y = inst.grid_size.height;
3579
        return true;
3580
3581

    } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
3582
        clip_image_u8 resized;
3583
3584
3585
        auto patch_size = params.patch_size * 2;
        auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
        image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
3586

3587
3588
        clip_image_f32_ptr img_f32(clip_image_f32_init());
        // clip_image_f32_ptr res(clip_image_f32_init());
3589
        normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
3590
        // res_imgs->data[0] = *res;
3591
        res_imgs->entries.push_back(std::move(img_f32));
3592
3593
        return true;
    }
3594
3595
3596
3597
    else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
            || ctx->proj_type() == PROJECTOR_TYPE_GEMMA3
            || ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3
            || ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
3598
    ) {
3599
        clip_image_u8 resized_image;
3600
        int sz = params.image_size;
3601
        image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
3602
        clip_image_f32_ptr img_f32(clip_image_f32_init());
3603
        //clip_image_save_to_bmp(resized_image, "resized.bmp");
3604
        normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
3605
        res_imgs->entries.push_back(std::move(img_f32));
3606
        return true;
3607
3608

    } else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL) {
3609
3610
3611
3612
        clip_image_u8 resized_image;
        auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
        image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
        clip_image_f32_ptr img_f32(clip_image_f32_init());
3613
        normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
3614
3615
        res_imgs->entries.push_back(std::move(img_f32));
        return true;
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631

    } else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) {
        GGML_ASSERT(!params.image_res_candidates.empty());
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

        for (size_t i = 0; i < imgs.size(); ++i) {
            clip_image_f32_ptr res(clip_image_f32_init());
            normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
            res_imgs->entries.push_back(std::move(res));
        }

        res_imgs->grid_x = inst.grid_size.width;
        res_imgs->grid_y = inst.grid_size.height;
        return true;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
    } else if ( ctx->proj_type() == PROJECTOR_TYPE_LFM2
             || ctx->proj_type() == PROJECTOR_TYPE_KIMIVL
    ) {
        GGML_ASSERT(params.proj_scale_factor);

        // smart resize
        const int width = img->nx;
        const int height = img->ny;
        const int total_factor = params.patch_size * params.proj_scale_factor;
        constexpr int min_image_tokens = 64;
        constexpr int max_image_tokens = 1024;
        const float min_pixels = min_image_tokens * total_factor * total_factor;
        const float max_pixels = max_image_tokens * total_factor * total_factor;

        auto round_by_factor = [f = total_factor](float x) { return static_cast<int>(std::nearbyintf(x / static_cast<float>(f))) * f; };
        auto ceil_by_factor  = [f = total_factor](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
        auto floor_by_factor = [f = total_factor](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };

        int h_bar = std::max(total_factor, round_by_factor(height));
        int w_bar = std::max(total_factor, round_by_factor(width));

        if (h_bar * w_bar > max_pixels) {
            const auto beta = std::sqrt((height * width) / max_pixels);
            h_bar = std::max(total_factor, floor_by_factor(height / beta));
            w_bar = std::max(total_factor, floor_by_factor(width / beta));
        } else if (h_bar * w_bar < min_pixels) {
            const auto beta = std::sqrt(min_pixels / (height * width));
            h_bar = ceil_by_factor(height * beta);
            w_bar = ceil_by_factor(width * beta);
        }

        const std::array<uint8_t, 3> pad_color = {122, 116, 104};

        clip_image_u8 resized_img;
        image_manipulation::resize_and_pad_image(*img, resized_img, clip_image_size{w_bar, h_bar}, pad_color);
        clip_image_f32_ptr res(clip_image_f32_init());
        normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
        res_imgs->entries.push_back(std::move(res));
        return true;
3671
    }
3672

3673
3674
3675
    // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
    // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156

3676
    clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
3677
3678
3679
3680
3681

    if (pad_to_square) {
        // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
        // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
        const int longer_side = std::max(img->nx, img->ny);
3682
3683
3684
3685
        temp->nx = longer_side;
        temp->ny = longer_side;
        temp->buf.resize(3 * longer_side * longer_side);

3686
3687
        // background color in RGB from LLaVA (this is the mean rgb color * 255)
        const std::array<uint8_t, 3> pad_color = {122, 116, 104};
3688

3689
3690
        // resize the image to the target_size
        image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
3691

3692
        clip_image_f32_ptr res(clip_image_f32_init());
3693
        normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
3694
3695
        res_imgs->entries.push_back(std::move(res));
        return true;
3696

3697
    } else if (!params.image_res_candidates.empty()) {
3698
3699
3700
        // "spatial_unpad" with "anyres" processing for llava-1.6
        auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
        std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
3701

3702
3703
3704
        for (size_t i = 0; i < imgs.size(); ++i) {
            // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
            clip_image_f32_ptr res(clip_image_f32_init());
3705
            normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
3706
            res_imgs->entries.push_back(std::move(res));
3707
3708
        }

3709
        return true;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3710
3711
    } else {
        GGML_ABORT("Unknown image preprocessing type");
3712
    }
3713
3714
3715
3716

}

ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
3717
    return ctx->model.image_newline;
3718
3719
3720
}

void clip_free(clip_ctx * ctx) {
3721
3722
3723
    if (ctx == nullptr) {
        return;
    }
3724
3725
3726
    delete ctx;
}

3727
// deprecated
3728
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
3729
3730
    const int32_t nx = ctx->model.hparams.image_size;
    const int32_t ny = ctx->model.hparams.image_size;
3731
    return clip_embd_nbytes_by_img(ctx, nx, ny);
3732
3733
}

3734
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
3735
3736
3737
    clip_image_f32 img;
    img.nx = img_w;
    img.ny = img_h;
3738
    return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
3739
3740
}

3741
int32_t clip_get_image_size(const struct clip_ctx * ctx) {
3742
    return ctx->model.hparams.image_size;
3743
3744
}

3745
int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
3746
    return ctx->model.hparams.patch_size;
3747
3748
}

3749
int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
3750
    return ctx->model.hparams.n_embd;
3751
3752
3753
}

const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
3754
    return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
3755
3756
3757
}

int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
3758
    const auto & params = ctx->model.hparams;
3759
    const int n_total = clip_n_output_tokens(ctx, img);
3760
    if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
3761
3762
3763
3764
3765
3766
        return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
    }
    return n_total;
}

int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
3767
3768
    const auto & params = ctx->model.hparams;
    if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
3769
3770
3771
3772
3773
3774
        return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
    }
    return 1;
}

int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
3775
    const auto & params = ctx->model.hparams;
3776

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3777
3778
3779
    // for models with fixed size image, the input image is already pre-processed and resized to square
    int patch_size = params.patch_size;
    int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
3780

3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
    projector_type proj = ctx->proj_type();

    switch (proj) {
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
            {
                // do nothing
            } break;
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
        case PROJECTOR_TYPE_GLM_EDGE:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3793
                n_patches /= 4;
3794
                if (ctx->model.mm_glm_tok_boi) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3795
                    n_patches += 2; // for BOI and EOI token embeddings
3796
3797
3798
3799
                }
            } break;
        case PROJECTOR_TYPE_MINICPMV:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3800
3801
3802
                // Use actual config value if available, otherwise fall back to hardcoded values
                if (params.minicpmv_query_num > 0) {
                    n_patches = params.minicpmv_query_num;
3803
                } else {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
                    // Fallback to hardcoded values for legacy models
                    if (params.minicpmv_version == 2) {
                        n_patches = 96;
                    } else if (params.minicpmv_version == 3) {
                        n_patches = 64;
                    } else if (params.minicpmv_version == 4) {
                        n_patches = 64;
                    } else if (params.minicpmv_version == 5) {
                        // MiniCPM-V 4.0
                        n_patches = 64;
                    } else if (params.minicpmv_version == 6) {
                        // MiniCPM-V 4.5
                        n_patches = 64;
                    } else {
                        GGML_ABORT("Unknown minicpmv version");
                    }
3820
3821
3822
3823
3824
                }
            } break;
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3825
                // dynamic size (2 conv, so double patch size)
3826
3827
3828
                int patch_size = params.patch_size * 2;
                int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
                int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3829
                n_patches = x_patch * y_patch;
3830
3831
3832
3833
            } break;
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
        case PROJECTOR_TYPE_INTERNVL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3834
        case PROJECTOR_TYPE_LLAMA4:
3835
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3836
3837
3838
                // both X and Y are downscaled by the scale factor
                int scale_factor = ctx->model.hparams.proj_scale_factor;
                n_patches /= (scale_factor * scale_factor);
3839
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3840
3841
        case PROJECTOR_TYPE_LFM2:
        case PROJECTOR_TYPE_KIMIVL:
3842
3843
            {
                // dynamic size
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3844
3845
3846
3847
3848
                int scale_factor = ctx->model.hparams.proj_scale_factor;
                int out_patch_size = params.patch_size * scale_factor;
                int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
                int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
                n_patches = x_patch * y_patch;
3849
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3850
        case PROJECTOR_TYPE_PIXTRAL:
3851
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3852
3853
3854
3855
3856
                // dynamic size
                int n_merge = params.spatial_merge_size;
                int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
                int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
                n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
3857
3858
3859
3860
3861
            } break;
        case PROJECTOR_TYPE_VOXTRAL:
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_QWEN2A:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3862
                n_patches = img->nx;
3863
3864
3865
3866

                const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
                if (ctx->model.audio_has_stack_frames()) {
                    GGML_ASSERT(proj_stack_factor > 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3867
3868
                    const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
                    n_patches = n_len / proj_stack_factor;
3869
3870
3871
                }

                // whisper downscales input token by half after conv1d
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3872
                n_patches /= 2;
3873
3874
3875

                if (ctx->model.audio_has_avgpool()) {
                    // divide by 2 because of nn.AvgPool1d(2, stride=2)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3876
                    n_patches /= 2;
3877
3878
3879
3880
3881
3882
                }
            } break;
        default:
            GGML_ABORT("unsupported projector type");
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3883
    return n_patches;
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
}

static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
    assert(embed_dim % 2 == 0);
    int H = pos.size();
    int W = pos[0].size();

    std::vector<float> omega(embed_dim / 2);
    for (int i = 0; i < embed_dim / 2; ++i) {
        omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
    }

    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                float out_value = pos[h][w] * omega[d];
                emb[h][w][d] = sin(out_value);
                emb[h][w][d + embed_dim / 2] = cos(out_value);
            }
        }
    }

    return emb;
}

static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
    assert(embed_dim % 2 == 0);
    std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
    std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)

    int H = emb_h.size();
    int W = emb_h[0].size();
    std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));

    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            for (int d = 0; d < embed_dim / 2; ++d) {
                emb[h][w][d] = emb_h[h][w][d];
                emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
            }
        }
    }
    return emb;
}

static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
    int grid_h_size = image_size.first;
    int grid_w_size = image_size.second;

    std::vector<float> grid_h(grid_h_size);
    std::vector<float> grid_w(grid_w_size);

    for (int i = 0; i < grid_h_size; ++i) {
        grid_h[i] = static_cast<float>(i);
    }
    for (int i = 0; i < grid_w_size; ++i) {
        grid_w[i] = static_cast<float>(i);
    }

    std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid[h][w] = grid_w[w];
        }
    }
    std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
    for (int h = 0; h < grid_h_size; ++h) {
        for (int w = 0; w < grid_w_size; ++w) {
            grid_2d[0][h][w] = grid_h[h];
            grid_2d[1][h][w] = grid_w[w];
        }
    }

    std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);

    int H = image_size.first;
    int W = image_size.second;
    std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
    for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
            pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
        }
    }

    return pos_embed_2d;
}

bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
3973
3974
3975
3976
3977
    clip_image_f32_batch imgs;
    clip_image_f32_ptr img_copy(clip_image_f32_init());
    *img_copy = *img;
    imgs.entries.push_back(std::move(img_copy));

3978
3979
3980
    return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}

3981
3982
3983
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
    const clip_image_f32_batch & imgs = *imgs_c_ptr;
    int batch_size = imgs.entries.size();
3984

3985
3986
3987
3988
    // TODO @ngxson : implement batch size > 1 as a loop
    //                we don't need true batching support because the cgraph will gonna be big anyway
    if (batch_size != 1) {
        return false; // only support batch size of 1
3989
    }
3990
3991

    // build the inference graph
3992
    ctx->debug_print_tensors.clear();
3993
    ggml_backend_sched_reset(ctx->sched.get());
3994
    ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
3995
    ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
3996
3997

    // set inputs
3998
    const auto & model   = ctx->model;
3999
4000
    const auto & hparams = model.hparams;

4001
4002
4003
    const int image_size_width  = imgs.entries[0]->nx;
    const int image_size_height = imgs.entries[0]->ny;

4004
4005
    const int patch_size    = hparams.patch_size;
    const int num_patches   = ((image_size_width / patch_size) * (image_size_height / patch_size));
4006
    const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
4007
4008
    const int pos_w = image_size_width  / patch_size;
    const int pos_h = image_size_height / patch_size;
4009

4010
4011
4012
    const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl

    auto get_inp_tensor = [&gf](const char * name) {
4013
        ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
        if (inp == nullptr) {
            GGML_ABORT("Failed to get tensor %s", name);
        }
        if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
            GGML_ABORT("Tensor %s is not an input tensor", name);
        }
        return inp;
    };

    auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_F32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_I32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    // set input pixel values
4038
    if (!imgs.is_audio) {
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
        size_t nelem = 0;
        for (const auto & img : imgs.entries) {
            nelem += img->nx * img->ny * 3;
        }
        std::vector<float> inp_raw(nelem);

        // layout of data (note: the channel dim is unrolled to better visualize the layout):
        //
        // ┌──W──┐
        // │     H │  channel = R
        // ├─────┤ │
        // │     H │  channel = G
        // ├─────┤ │
        // │     H │  channel = B
        // └─────┘ │
        //   ──────┘ x B
4055

4056
4057
4058
        for (size_t i = 0; i < imgs.entries.size(); i++) {
            const int nx = imgs.entries[i]->nx;
            const int ny = imgs.entries[i]->ny;
4059
4060
4061
            const int n = nx * ny;

            for (int b = 0; b < batch_size; b++) {
4062
4063
4064
4065
4066
4067
4068
4069
                float * batch_entry = inp_raw.data() + b * (3*n);
                for (int y = 0; y < ny; y++) {
                    for (int x = 0; x < nx; x++) {
                        size_t base_src = 3*(y * nx + x); // idx of the first channel
                        size_t base_dst =    y * nx + x;  // idx of the first channel
                        batch_entry[      base_dst] = imgs.entries[b]->buf[base_src    ];
                        batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
                        batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
4070
4071
4072
4073
                    }
                }
            }
        }
4074
        set_input_f32("inp_raw", inp_raw);
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084

    } else {
        // audio input
        GGML_ASSERT(imgs.entries.size() == 1);
        const auto & mel_inp = imgs.entries[0];
        const int n_step = mel_inp->nx;
        const int n_mel  = mel_inp->ny;
        std::vector<float> inp_raw(n_step * n_mel);
        std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
        set_input_f32("inp_raw", inp_raw);
4085
4086
    }

4087
    // set input per projector
4088
    switch (ctx->model.proj_type) {
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
        case PROJECTOR_TYPE_MINICPMV:
            {
                // inspired from siglip:
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
                std::vector<int32_t> positions(pos_h * pos_w);
                int bucket_coords_h[1024];
                int bucket_coords_w[1024];
                for (int i = 0; i < pos_h; i++){
                    bucket_coords_h[i] = std::floor(70.0*i/pos_h);
4099
                }
4100
4101
4102
4103
4104
4105
4106
4107
4108
                for (int i = 0; i < pos_w; i++){
                    bucket_coords_w[i] = std::floor(70.0*i/pos_w);
                }
                for (int i = 0, id = 0; i < pos_h; i++){
                    for (int j = 0; j < pos_w; j++){
                        positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
                    }
                }
                set_input_i32("positions", positions);
4109

4110
4111
4112
4113
                // inspired from resampler of Qwen-VL:
                //    -> https://huggingface.co/Qwen/Qwen-VL/tree/main
                //    -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
                int embed_dim = clip_n_mmproj_embd(ctx);
4114

4115
4116
                // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
                auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
4117

4118
4119
4120
4121
4122
4123
                std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
                for(int i = 0; i < pos_w * pos_h; ++i){
                    for(int j = 0; j < embed_dim; ++j){
                        pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
                    }
                }
4124

4125
4126
4127
4128
4129
4130
4131
                set_input_f32("pos_embed", pos_embed);
            } break;
        case PROJECTOR_TYPE_QWEN2VL:
            {
                const int merge_ratio = 2;
                const int pw = image_size_width  / patch_size;
                const int ph = image_size_height / patch_size;
4132
                std::vector<int> positions(n_pos * 4);
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
                int ptr = 0;
                for (int y = 0; y < ph; y += merge_ratio) {
                    for (int x = 0; x < pw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                positions[                  ptr] = y + dy;
                                positions[    num_patches + ptr] = x + dx;
                                positions[2 * num_patches + ptr] = y + dy;
                                positions[3 * num_patches + ptr] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }
4147

4148
4149
4150
                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_QWEN25VL:
4151
            {
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
                // pw * ph = number of tokens output by ViT after apply patch merger
                // ipw * ipw = number of vision token been processed inside ViT
                const int merge_ratio = 2;
                const int pw  = image_size_width  / patch_size / merge_ratio;
                const int ph  = image_size_height / patch_size / merge_ratio;
                const int ipw = image_size_width  / patch_size;
                const int iph = image_size_height / patch_size;

                std::vector<int> idx    (ph * pw);
                std::vector<int> inv_idx(ph * pw);

                if (use_window_attn) {
                    const int attn_window_size = 112;
                    const int grid_window = attn_window_size / patch_size / merge_ratio;
                    int dst = 0;
                    // [num_vision_tokens, num_vision_tokens] attention mask tensor
                    std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
                    int mask_row = 0;

                    for (int y = 0; y < ph; y += grid_window) {
                        for (int x = 0; x < pw; x += grid_window) {
                            const int win_h = std::min(grid_window, ph - y);
                            const int win_w = std::min(grid_window, pw - x);
                            const int dst_0 = dst;
                            // group all tokens belong to the same window togather (to a continue range)
                            for (int dy = 0; dy < win_h; dy++) {
                                for (int dx = 0; dx < win_w; dx++) {
                                    const int src = (y + dy) * pw + (x + dx);
                                    GGML_ASSERT(src < (int)idx.size());
                                    GGML_ASSERT(dst < (int)inv_idx.size());
                                    idx    [src] = dst;
                                    inv_idx[dst] = src;
                                    dst++;
                                }
                            }

                            for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
                                int row_offset = mask_row * (ipw * iph);
                                std::fill(
                                    mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
                                    mask.begin() + row_offset + (dst   * merge_ratio * merge_ratio),
                                    0.0);
                                mask_row++;
                            }
4196
4197
                        }
                    }
4198
4199
4200
4201
4202
4203
4204
4205

                    set_input_i32("window_idx",     idx);
                    set_input_i32("inv_window_idx", inv_idx);
                    set_input_f32("window_mask",    mask);
                } else {
                    for (int i = 0; i < ph * pw; i++) {
                        idx[i] = i;
                    }
4206
4207
                }

4208
                const int mpow = merge_ratio * merge_ratio;
4209
                std::vector<int> positions(n_pos * 4);
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227

                int ptr = 0;
                for (int y = 0; y < iph; y += merge_ratio) {
                    for (int x = 0; x < ipw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                auto remap = idx[ptr / mpow];
                                remap = (remap * mpow) + (ptr % mpow);

                                positions[                  remap] = y + dy;
                                positions[    num_patches + remap] = x + dx;
                                positions[2 * num_patches + remap] = y + dy;
                                positions[3 * num_patches + remap] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }
4228

4229
4230
4231
                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4232
        case PROJECTOR_TYPE_KIMIVL:
4233
4234
4235
            {
                // set the 2D positions
                int n_patches_per_col = image_size_width / patch_size;
4236
                std::vector<int> pos_data(n_pos);
4237
                // dimension H
4238
                for (int i = 0; i < n_pos; i++) {
4239
4240
4241
4242
                    pos_data[i] = i / n_patches_per_col;
                }
                set_input_i32("pos_h", pos_data);
                // dimension W
4243
                for (int i = 0; i < n_pos; i++) {
4244
4245
4246
4247
4248
4249
4250
                    pos_data[i] = i % n_patches_per_col;
                }
                set_input_i32("pos_w", pos_data);
            } break;
        case PROJECTOR_TYPE_GLM_EDGE:
        {
            // llava and other models
4251
4252
            std::vector<int32_t> positions(n_pos);
            for (int i = 0; i < n_pos; i++) {
4253
                positions[i] = i;
4254
            }
4255
4256
4257
4258
4259
4260
4261
4262
            set_input_i32("positions", positions);
        } break;
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
            {
                // llava and other models
4263
4264
                std::vector<int32_t> positions(n_pos);
                for (int i = 0; i < n_pos; i++) {
4265
4266
4267
                    positions[i] = i;
                }
                set_input_i32("positions", positions);
4268

4269
4270
4271
                // The patches vector is used to get rows to index into the embeds with;
                // we should skip dim 0 only if we have CLS to avoid going out of bounds
                // when retrieving the rows.
4272
                int patch_offset = model.class_embedding ? 1 : 0;
4273
                std::vector<int32_t> patches(num_patches);
4274
                for (int i = 0; i < num_patches; i++) {
4275
                    patches[i] = i + patch_offset;
4276
                }
4277
4278
4279
4280
                set_input_i32("patches", patches);
            } break;
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
4281
        case PROJECTOR_TYPE_INTERNVL:
4282
4283
        case PROJECTOR_TYPE_QWEN2A:
        case PROJECTOR_TYPE_ULTRAVOX:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4284
        case PROJECTOR_TYPE_LFM2:
4285
        case PROJECTOR_TYPE_VOXTRAL:
4286
4287
4288
            {
                // do nothing
            } break;
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
        case PROJECTOR_TYPE_LLAMA4:
            {
                // set the 2D positions
                int n_patches_per_col = image_size_width / patch_size;
                std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
                // last pos is always kept 0, it's for CLS
                // dimension H
                for (int i = 0; i < num_patches; i++) {
                    pos_data[i] = (i / n_patches_per_col) + 1;
                }
                set_input_i32("pos_h", pos_data);
                // dimension W
                for (int i = 0; i < num_patches; i++) {
                    pos_data[i] = (i % n_patches_per_col) + 1;
                }
                set_input_i32("pos_w", pos_data);
            } break;
4306
4307
        default:
            GGML_ABORT("Unknown projector type");
4308
4309
    }

4310
4311
4312
4313
4314
4315
4316
4317
4318
    // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
    ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
    ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
    if (reg) {
        auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
        if (ggml_backend_set_n_threads_fn) {
            ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
        }
    }
4319

4320
4321
4322
4323
4324
    auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
    if (status != GGML_STATUS_SUCCESS) {
        LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
        return false;
    }
4325

4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
    // print debug nodes
    if (ctx->debug_graph) {
        LOG_INF("\n\n---\n\n");
        LOG_INF("\n\nDebug graph:\n\n");
        for (ggml_tensor * t : ctx->debug_print_tensors) {
            std::vector<uint8_t> data(ggml_nbytes(t));
            ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
            print_tensor_shape(t);
            print_tensor_data(t, data.data(), 3);
        }
    }

4338
    // the last node is the embedding tensor
4339
4340
4341
4342
4343
4344
    ggml_tensor * embeddings = ggml_graph_node(gf, -1);

    // sanity check (only support batch size of 1 for now)
    const int n_tokens_out = embeddings->ne[1];
    const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
    if (n_tokens_out != expected_n_tokens_out) {
4345
        LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
4346
4347
        GGML_ABORT("Invalid number of output tokens");
    }
4348
4349
4350
4351
4352
4353
4354
4355

    // copy the embeddings to the location passed by the user
    ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));

    return true;
}

int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
4356
    switch (ctx->model.proj_type) {
4357
        case PROJECTOR_TYPE_LDP:
4358
            return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
4359
        case PROJECTOR_TYPE_LDPV2:
4360
            return ctx->model.mm_model_peg_0_b->ne[0];
4361
4362
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_PIXTRAL:
4363
            return ctx->model.mm_2_w->ne[1];
4364
        case PROJECTOR_TYPE_MLP_NORM:
4365
            return ctx->model.mm_3_b->ne[0];
4366
        case PROJECTOR_TYPE_MINICPMV:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4367
            return ctx->model.mm_model_proj->ne[0];
4368
        case PROJECTOR_TYPE_GLM_EDGE:
4369
            return ctx->model.mm_model_mlp_3_w->ne[1];
4370
4371
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
4372
            return ctx->model.mm_1_b->ne[0];
4373
        case PROJECTOR_TYPE_GEMMA3:
4374
            return ctx->model.mm_input_proj_w->ne[0];
4375
        case PROJECTOR_TYPE_IDEFICS3:
4376
4377
4378
4379
            return ctx->model.projection->ne[1];
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_VOXTRAL:
            return ctx->model.mm_2_w->ne[1];
4380
        case PROJECTOR_TYPE_INTERNVL:
4381
4382
4383
4384
4385
            return ctx->model.mm_3_w->ne[1];
        case PROJECTOR_TYPE_LLAMA4:
            return ctx->model.mm_model_proj->ne[1];
        case PROJECTOR_TYPE_QWEN2A:
            return ctx->model.mm_fc_w->ne[1];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4386
4387
4388
        case PROJECTOR_TYPE_LFM2:
        case PROJECTOR_TYPE_KIMIVL:
            return ctx->model.mm_2_w->ne[1];
4389
4390
        default:
            GGML_ABORT("Unknown projector type");
4391
    }
4392
4393
4394
}

int clip_is_minicpmv(const struct clip_ctx * ctx) {
4395
4396
    if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
        return ctx->model.hparams.minicpmv_version;
4397
4398
4399
    }
    return 0;
}
4400

4401
bool clip_is_glm(const struct clip_ctx * ctx) {
4402
    return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
4403
}
4404

4405
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
4406
4407
    return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
        || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL;
4408
4409
}

4410
bool clip_is_llava(const struct clip_ctx * ctx) {
4411
    return ctx->model.hparams.has_llava_projector;
4412
4413
4414
}

bool clip_is_gemma3(const struct clip_ctx * ctx) {
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
    return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
}

bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
    return ctx->model.modality == CLIP_MODALITY_VISION;
}

bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
    return ctx->model.modality == CLIP_MODALITY_AUDIO;
}

bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
    return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
        || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
        || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
4430
4431
}

4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
    clip_image_f32 clip_img;
    clip_img.buf.resize(h * w * 3);
    for (int i = 0; i < h*w*3; i++)
    {
        clip_img.buf[i] = img[i];
    }
    clip_img.nx = w;
    clip_img.ny = h;
    clip_image_encode(ctx, n_threads, &clip_img, vec);
    return true;
}
4444
4445
4446
4447
4448
4449

//
// API used internally with mtmd
//

projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
    return ctx->proj_type();
}

void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
    clip_image_f32 * audio = new clip_image_f32;
    audio->nx = n_frames;
    audio->ny = n_mel;
    audio->buf.resize(n_frames * n_mel);
    std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));

    batch->entries.push_back(clip_image_f32_ptr(audio));
    batch->is_audio = true;
4462
}