convert_gptoss.go 6.6 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
package convert

import (
	"bytes"
	"cmp"
	"encoding/binary"
	"io"
	"slices"
	"strings"

	"github.com/ollama/ollama/fs/ggml"
	"github.com/pdevine/tensor"
	"github.com/pdevine/tensor/native"
)

type gptossModel struct {
	ModelParameters
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
	HiddenLayers          uint32  `json:"num_hidden_layers"`
	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"`
	HiddenSize            uint32  `json:"hidden_size"`
	IntermediateSize      uint32  `json:"intermediate_size"`
	AttentionHeads        uint32  `json:"num_attention_heads"`
	KeyValueHeads         uint32  `json:"num_key_value_heads"`
	HeadDim               uint32  `json:"head_dim"`
	Experts               uint32  `json:"num_experts"`
	LocalExperts          uint32  `json:"num_local_experts"`
	ExpertsPerToken       uint32  `json:"experts_per_token"`
	RMSNormEpsilon        float32 `json:"rms_norm_eps"`
	InitialContextLength  uint32  `json:"initial_context_length"`
	RopeTheta             float32 `json:"rope_theta"`
	RopeScalingFactor     float32 `json:"rope_scaling_factor"`
	RopeScaling           struct {
		Factor float32 `json:"factor"`
	} `json:"rope_scaling"`
	SlidingWindow uint32 `json:"sliding_window"`
Michael Yang's avatar
Michael Yang committed
36
37
38
39
40
41
42
43
}

var _ ModelConverter = (*gptossModel)(nil)

func (m *gptossModel) KV(t *Tokenizer) ggml.KV {
	kv := m.ModelParameters.KV(t)
	kv["general.architecture"] = "gptoss"
	kv["general.file_type"] = uint32(4)
44
	kv["gptoss.context_length"] = cmp.Or(m.MaxPositionEmbeddings, uint32(m.RopeScalingFactor*float32(m.InitialContextLength)))
Michael Yang's avatar
Michael Yang committed
45
46
47
	kv["gptoss.block_count"] = m.HiddenLayers
	kv["gptoss.embedding_length"] = m.HiddenSize
	kv["gptoss.feed_forward_length"] = m.IntermediateSize
48
	kv["gptoss.expert_count"] = cmp.Or(m.Experts, m.LocalExperts)
Michael Yang's avatar
Michael Yang committed
49
50
51
52
53
54
55
56
	kv["gptoss.expert_used_count"] = m.ExpertsPerToken
	kv["gptoss.attention.head_count"] = m.AttentionHeads
	kv["gptoss.attention.head_count_kv"] = m.KeyValueHeads
	kv["gptoss.attention.key_length"] = m.HeadDim
	kv["gptoss.attention.value_length"] = m.HeadDim
	kv["gptoss.attention.layer_norm_rms_epsilon"] = cmp.Or(m.RMSNormEpsilon, 1e-5)
	kv["gptoss.attention.sliding_window"] = m.SlidingWindow
	kv["gptoss.rope.freq_base"] = m.RopeTheta
57
	kv["gptoss.rope.scaling.factor"] = cmp.Or(m.RopeScalingFactor, m.RopeScaling.Factor)
Michael Yang's avatar
Michael Yang committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
	kv["gptoss.rope.scaling.original_context_length"] = m.InitialContextLength
	kv["tokenizer.ggml.bos_token_id"] = uint32(199998) // <|startoftext|>
	kv["tokenizer.ggml.add_bos_token"] = false
	kv["tokenizer.ggml.eos_token_id"] = uint32(199999) // <|endoftext|>
	kv["tokenizer.ggml.eos_token_ids"] = []int32{
		199999, /* <|endoftext|> */
		200002, /* <|return|> */
		200012, /* <|call|> */
	}
	kv["tokenizer.ggml.add_eos_token"] = false
	return kv
}

func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
	var out []*ggml.Tensor
	mxfp4s := make(map[string]*mxfp4)
	for _, t := range ts {
		if strings.HasSuffix(t.Name(), ".blocks") || strings.HasSuffix(t.Name(), ".scales") {
			dot := strings.LastIndex(t.Name(), ".")
			name, suffix := t.Name()[:dot], t.Name()[dot+1:]
			if _, ok := mxfp4s[name]; !ok {
				mxfp4s[name] = &mxfp4{}
			}

			switch suffix {
			case "blocks":
				mxfp4s[name].blocks = t
			case "scales":
				mxfp4s[name].scales = t
			}
Michael Yang's avatar
Michael Yang committed
88
89
90
91
92
93
94
95
96
97
98
		} else if strings.HasSuffix(t.Name(), "gate_up_exps.bias") {
			out = append(out, slices.Collect(splitDim(t, 1,
				split{
					Replacer: strings.NewReplacer("gate_up_exps", "gate_exps"),
					slices: []tensor.Slice{nil, tensor.S(0, int(t.Shape()[1]), 2)},
				},
				split{
					Replacer: strings.NewReplacer("gate_up_exps", "up_exps"),
					slices: []tensor.Slice{nil, tensor.S(1, int(t.Shape()[1]), 2)},
				},
			))...)
Michael Yang's avatar
Michael Yang committed
99
100
101
102
103
104
105
106
107
108
109
110
		} else {
			out = append(out, &ggml.Tensor{
				Name:     t.Name(),
				Kind:     t.Kind(),
				Shape:    t.Shape(),
				WriterTo: t,
			})
		}
	}

	for name, mxfp4 := range mxfp4s {
		dims := mxfp4.blocks.Shape()
111
112
113
114
115

		if !strings.HasSuffix(name, ".weight") {
			name += ".weight"
		}

Michael Yang's avatar
Michael Yang committed
116
117
118
119
120
121
122
123
124
125
126
127
		out = append(out, &ggml.Tensor{
			Name:     name,
			Kind:     uint32(ggml.TensorTypeMXFP4),
			Shape:    []uint64{dims[0], dims[1], dims[2] * dims[3] * 2},
			WriterTo: mxfp4,
		})
	}

	return out
}

func (m *gptossModel) Replacements() []string {
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
	var replacements []string
	if m.MaxPositionEmbeddings > 0 {
		// hf flavored model
		replacements = []string{
			"lm_head", "output",
			"model.embed_tokens", "token_embd",
			"model.layers", "blk",
			"input_layernorm", "attn_norm",
			"self_attn.q_proj", "attn_q",
			"self_attn.k_proj", "attn_k",
			"self_attn.v_proj", "attn_v",
			"self_attn.o_proj", "attn_out",
			"self_attn.sinks", "attn_sinks",
			"post_attention_layernorm", "ffn_norm",
			"mlp.router", "ffn_gate_inp",
			"mlp.experts.gate_up_proj_", "ffn_gate_up_exps.",
			"mlp.experts.down_proj_", "ffn_down_exps.",
			"model.norm", "output_norm",
		}
	} else {
		replacements = []string{
			// noop replacements so other replacements will not be applied
			".blocks", ".blocks",
			".scales", ".scales",
			// real replacements
			"block", "blk",
			"attn.norm", "attn_norm",
			"attn.qkv", "attn_qkv",
			"attn.sinks", "attn_sinks",
			"attn.out", "attn_out",
			"mlp.norm", "ffn_norm",
			"mlp.gate", "ffn_gate_inp",
			"mlp.mlp1_", "ffn_gate_up_exps.",
			"mlp.mlp2_", "ffn_down_exps.",
			"embedding", "token_embd",
			"norm", "output_norm",
			"unembedding", "output",
			"scale", "weight",
		}
Michael Yang's avatar
Michael Yang committed
167
	}
168
	return replacements
Michael Yang's avatar
Michael Yang committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
}

type mxfp4 struct {
	blocks, scales Tensor
}

func (m *mxfp4) WriteTo(w io.Writer) (int64, error) {
	var b bytes.Buffer
	if _, err := m.blocks.WriteTo(&b); err != nil {
		return 0, err
	}

	blocksDims := make([]int, len(m.blocks.Shape()))
	for i, d := range m.blocks.Shape() {
		blocksDims[i] = int(d)
	}

186
187
188
189
190
191
192
193
194
195
196
197
198
199
	bts := b.Bytes()
	var tmp [16]byte
	for i := 0; i < b.Len(); i += 16 {
		for j := range 8 {
			// transform a1b2c3 ... x7y8z9 -> 71xa82yb93zc
			a, b := bts[i+j], bts[i+j+8]
			tmp[2*j+0] = (a & 0x0F) | (b << 4)
			tmp[2*j+1] = (a >> 4) | (b & 0xF0)
		}

		copy(bts[i:i+16], tmp[:])
	}

	var blocks tensor.Tensor = tensor.New(tensor.WithShape(blocksDims...), tensor.WithBacking(bts))
Michael Yang's avatar
Michael Yang committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

	var s bytes.Buffer
	if _, err := m.scales.WriteTo(&s); err != nil {
		return 0, err
	}

	scalesDims := slices.Repeat([]int{1}, len(m.blocks.Shape()))
	for i, d := range m.scales.Shape() {
		scalesDims[i] = int(d)
	}

	var scales tensor.Tensor = tensor.New(tensor.WithShape(scalesDims...), tensor.WithBacking(s.Bytes()))

	out, err := tensor.Concat(3, scales, blocks)
	if err != nil {
		return 0, err
	}

	out = tensor.Materialize(out)

	if err := out.Reshape(out.Shape().TotalSize()); err != nil {
		return 0, err
	}

	u8s, err := native.VectorU8(out.(*tensor.Dense))
	if err != nil {
		return 0, err
	}

	if err := binary.Write(w, binary.LittleEndian, u8s); err != nil {
		return 0, err
	}

233
	return int64(len(u8s)), nil
Michael Yang's avatar
Michael Yang committed
234
}