0007-solar-pro.patch 17.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:16 -0700
Subject: [PATCH] solar-pro

solar-pro introduces block skip connections where blocks are connected
to other, non-sequential blocks with a scale multiple

this change adds 4 new keys to store the skip connections and one new
tensor to store the scalar. the scalar is implemented a 1-dimensional
tensor with 2 elements dervied from the model's bskcn_tv configuration.
in general, the values are (bskcn_tv, 1 - bskcn_tv)
---
 src/llama.cpp | 269 +++++++++++++++++++++++++++++++++++++++++++++++---
 1 file changed, 255 insertions(+), 14 deletions(-)

17
diff --git a/src/llama.cpp b/src/llama.cpp
18
index a639522d..83b80b59 100644
19
20
--- a/src/llama.cpp
+++ b/src/llama.cpp
21
22
23
24
@@ -217,6 +217,7 @@ enum llm_arch {
     LLM_ARCH_GRANITE,
     LLM_ARCH_GRANITE_MOE,
     LLM_ARCH_CHAMELEON,
25
26
27
28
+    LLM_ARCH_SOLAR,
     LLM_ARCH_UNKNOWN,
 };
 
29
30
31
32
@@ -270,6 +271,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_GRANITE,         "granite"      },
     { LLM_ARCH_GRANITE_MOE,     "granitemoe"   },
     { LLM_ARCH_CHAMELEON,       "chameleon"    },
33
34
35
36
+    { LLM_ARCH_SOLAR,           "solar"        },
     { LLM_ARCH_UNKNOWN,         "(unknown)"    },
 };
 
37
@@ -327,6 +329,7 @@ enum llm_kv {
38
39
     LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
     LLM_KV_ATTENTION_SLIDING_WINDOW,
40
     LLM_KV_ATTENTION_SCALE,
41
42
43
44
+    LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
 
     LLM_KV_ROPE_DIMENSION_COUNT,
     LLM_KV_ROPE_FREQ_BASE,
45
46
47
@@ -421,20 +424,21 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
     { LLM_KV_RESIDUAL_SCALE,                    "%s.residual_scale"                    },
     { LLM_KV_EMBEDDING_SCALE,                   "%s.embedding_scale"                   },
48
49
50
51
52
53
54
55
56
57
58
59
60
61
 
-    { LLM_KV_ATTENTION_HEAD_COUNT,             "%s.attention.head_count"             },
-    { LLM_KV_ATTENTION_HEAD_COUNT_KV,          "%s.attention.head_count_kv"          },
-    { LLM_KV_ATTENTION_MAX_ALIBI_BIAS,         "%s.attention.max_alibi_bias"         },
-    { LLM_KV_ATTENTION_CLAMP_KQV,              "%s.attention.clamp_kqv"              },
-    { LLM_KV_ATTENTION_KEY_LENGTH,             "%s.attention.key_length"             },
-    { LLM_KV_ATTENTION_VALUE_LENGTH,           "%s.attention.value_length"           },
-    { LLM_KV_ATTENTION_LAYERNORM_EPS,          "%s.attention.layer_norm_epsilon"     },
-    { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,      "%s.attention.layer_norm_rms_epsilon" },
-    { LLM_KV_ATTENTION_CAUSAL,                 "%s.attention.causal"                 },
-    { LLM_KV_ATTENTION_Q_LORA_RANK,            "%s.attention.q_lora_rank"            },
-    { LLM_KV_ATTENTION_KV_LORA_RANK,           "%s.attention.kv_lora_rank"           },
-    { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
-    { LLM_KV_ATTENTION_SLIDING_WINDOW,         "%s.attention.sliding_window"         },
62
-    { LLM_KV_ATTENTION_SCALE,                  "%s.attention.scale"                  },
63
64
65
66
67
68
69
70
71
72
73
74
75
+    { LLM_KV_ATTENTION_HEAD_COUNT,             "%s.attention.head_count"               },
+    { LLM_KV_ATTENTION_HEAD_COUNT_KV,          "%s.attention.head_count_kv"            },
+    { LLM_KV_ATTENTION_MAX_ALIBI_BIAS,         "%s.attention.max_alibi_bias"           },
+    { LLM_KV_ATTENTION_CLAMP_KQV,              "%s.attention.clamp_kqv"                },
+    { LLM_KV_ATTENTION_KEY_LENGTH,             "%s.attention.key_length"               },
+    { LLM_KV_ATTENTION_VALUE_LENGTH,           "%s.attention.value_length"             },
+    { LLM_KV_ATTENTION_LAYERNORM_EPS,          "%s.attention.layer_norm_epsilon"       },
+    { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,      "%s.attention.layer_norm_rms_epsilon"   },
+    { LLM_KV_ATTENTION_CAUSAL,                 "%s.attention.causal"                   },
+    { LLM_KV_ATTENTION_Q_LORA_RANK,            "%s.attention.q_lora_rank"              },
+    { LLM_KV_ATTENTION_KV_LORA_RANK,           "%s.attention.kv_lora_rank"             },
+    { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count"   },
+    { LLM_KV_ATTENTION_SLIDING_WINDOW,         "%s.attention.sliding_window"           },
76
+    { LLM_KV_ATTENTION_SCALE,                  "%s.attention.scale"                    },
77
78
79
80
+    { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,  "%s.attention.block_skip_connection.%d" },
 
     { LLM_KV_ROPE_DIMENSION_COUNT,          "%s.rope.dimension_count"                 },
     { LLM_KV_ROPE_FREQ_BASE,                "%s.rope.freq_base"                       },
81
@@ -608,6 +612,7 @@ enum llm_tensor {
82
     LLM_TENSOR_ENC_OUTPUT_NORM,
83
84
     LLM_TENSOR_CLS,
     LLM_TENSOR_CLS_OUT,
85
86
87
88
+    LLM_TENSOR_BSKCN_TV,
 };
 
 static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
89
90
@@ -1527,6 +1532,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
             { LLM_TENSOR_ATTN_K_NORM,     "blk.%d.attn_k_norm" },
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
         },
     },
+    {
+        LLM_ARCH_SOLAR,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+            { LLM_TENSOR_BSKCN_TV,        "bskcn_tv" },
+        },
+    },
     {
         LLM_ARCH_UNKNOWN,
         {
114
@@ -2360,6 +2383,7 @@ enum e_model {
115
116
117
118
119
120
121
     MODEL_15B,
     MODEL_16B,
     MODEL_20B,
+    MODEL_22B,
     MODEL_30B,
     MODEL_34B,
     MODEL_35B,
122
@@ -2409,6 +2433,8 @@ struct llama_hparams {
123
124
125
126
127
128
129
130
     std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
     std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
 
+    std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
+
     uint32_t n_layer_dense_lead = 0;
     uint32_t n_lora_q = 0;
     uint32_t n_lora_kv = 0;
131
@@ -2479,6 +2505,7 @@ struct llama_hparams {
132
133
134
135
136
137
138
         if (this->n_head_arr    != other.n_head_arr)    return true;
         if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
         if (this->n_ff_arr      != other.n_ff_arr)      return true;
+        if (this->n_bskcn_arr   != other.n_bskcn_arr)   return true;
 
         if (this->n_rel_attn_bkts    != other.n_rel_attn_bkts)    return true;
         if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
139
@@ -2588,6 +2615,14 @@ struct llama_hparams {
140
141
142
143
144
145
146
147
148
149
150
151
152
153
             return ssm_d_state * ssm_d_inner;
         }
     }
+
+    bool n_bskcn(uint32_t n, uint32_t il = 0) const {
+        if (il < n_layer) {
+            return n_bskcn_arr[n][il] > 0;
+        }
+
+        GGML_ABORT("fatal error");
+    }
 };
 
 static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
154
@@ -2769,6 +2804,8 @@ struct llama_layer {
155
156
157
158
159
160
161
162
     struct ggml_tensor * ffn_gate_scale;
     struct ggml_tensor * ffn_up_scale;
     struct ggml_tensor * ffn_down_scale;
+
+    struct ggml_tensor * bskcn_tv;
 };
 
 // very similar to llama_batch,
163
@@ -6134,6 +6171,21 @@ static void llm_load_hparams(
164
                     default: model.type = e_model::MODEL_UNKNOWN;
165
                }
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
             } break;
+        case LLM_ARCH_SOLAR:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+                for (int i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
+                    auto & bskcn = hparams.n_bskcn_arr.at(i);
+                    bskcn.fill(0);
+                    ml.get_key_or_arr(::format(LLM_KV_NAMES.at(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION), LLM_ARCH_NAMES.at(ml.llm_kv.arch), i), bskcn, hparams.n_layer, false);
+                }
+
+                switch (hparams.n_layer) {
+                    case 64: model.type = e_model::MODEL_22B; break;
+                    default: model.type = e_model::MODEL_UNKNOWN;
+                }
+            }
         default: (void)0;
     }
 
185
@@ -8831,6 +8883,38 @@ static bool llm_load_tensors(
186
 
187
188
189
190
191
192
193
                         layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
 
+                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
+                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
+                    }
+                } break;
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
+            case LLM_ARCH_SOLAR:
+                {
+                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+                    // output
+                    {
+                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        ggml_context * ctx_layer = ctx_for_layer(i);
+                        ggml_context * ctx_split = ctx_for_layer_split(i);
+
+                        auto & layer = model.layers[i];
+
+                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head});
+                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
+                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
+                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
+
+                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+                        layer.bskcn_tv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_BSKCN_TV, "weight"), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+
221
222
223
224
                         layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
                         layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
@@ -16179,6 +16263,158 @@ struct llm_build_context {
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
 
         return gf;
     }
+
+    ggml_cgraph * build_solar() {
+        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
+
+        // mutable variable, needed during the last layer of the computation to skip unused tokens
+        int32_t n_tokens = this->n_tokens;
+
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        struct ggml_tensor * cur;
+        struct ggml_tensor * inpL;
+
+        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+        // inp_pos - contains the positions
+        struct ggml_tensor * inp_pos = build_inp_pos();
+
+        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+        struct ggml_tensor * bskcn_1;
+        struct ggml_tensor * bskcn_2;
+
+        for (int il = 0; il < n_layer; ++il) {
+            struct ggml_tensor * inpSA = inpL;
+
+            if (hparams.n_bskcn(0, il)) {
+                bskcn_1 = inpSA;
+            }
+
+            if (hparams.n_bskcn(1, il)) {
+                bskcn_2 = inpSA;
+            }
+
+            if (hparams.n_bskcn(2, il)) {
+                inpSA = ggml_add(
+                   ctx0,
+                   ggml_mul(ctx0, bskcn_1, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
+                   ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
+            }
+
+            if (hparams.n_bskcn(3, il)) {
+                inpSA = ggml_add(
+                   ctx0,
+                   ggml_mul(ctx0, bskcn_2, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
+                   ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
+            }
+
+            // norm
+            cur = llm_build_norm(ctx0, inpL, hparams,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // rope freq factors for llama3; may return nullptr for llama2 and other models
+                struct ggml_tensor * rope_factors = build_rope_factors(il);
+
+                // compute Q and K and RoPE them
+                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+                if (model.layers[il].bq) {
+                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+                    cb(Qcur, "Qcur", il);
+                }
+
+                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+                if (model.layers[il].bk) {
+                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+                    cb(Kcur, "Kcur", il);
+                }
+
+                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+                if (model.layers[il].bv) {
+                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+                    cb(Vcur, "Vcur", il);
+                }
+
+                Qcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Qcur, "Qcur", il);
+
+                Kcur = ggml_rope_ext(
+                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
+                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                    ext_factor, attn_factor, beta_fast, beta_slow
+                );
+                cb(Kcur, "Kcur", il);
+
+                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+                n_tokens = n_outputs;
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = llm_build_norm(ctx0, ffn_inp, hparams,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, cb, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = llm_build_ffn(ctx0, lctx, cur,
+                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
+                    model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+            cb(cur, "ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+            cb(cur, "ffn_out", il);
+
+            cur = lctx.cvec.apply_to(ctx0, cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = llm_build_norm(ctx0, cur, hparams,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, cb, -1);
+        cb(cur, "result_norm", -1);
+
+        // lm_head
+        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+        cb(cur, "result_output", -1);
+
+        ggml_build_forward_expand(gf, cur);
+
+        return gf;
+    }
 };
 
 static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
383
@@ -16443,6 +16679,10 @@ static struct ggml_cgraph * llama_build_graph(
384
             {
385
                 result = llm.build_chameleon();
386
387
388
389
390
391
392
393
             } break;
+        case LLM_ARCH_SOLAR:
+            {
+                result = llm.build_solar();
+            } break;
         default:
             GGML_ABORT("fatal error");
     }
394
395
396
397
@@ -19589,6 +19829,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
         case LLM_ARCH_GRANITE:
         case LLM_ARCH_GRANITE_MOE:
         case LLM_ARCH_CHAMELEON:
398
399
400
401
+        case LLM_ARCH_SOLAR:
             return LLAMA_ROPE_TYPE_NORM;
 
         // the pairs of head values are offset by n_rot/2