unary.cu 16.2 KB
Newer Older
1
/**
2
 * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
 *
 * MIT License
 *
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "unary.cuh"

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
static __global__ void neg_f32(const float * x, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }

    dst[i] = -x[i];
}

static __global__ void step_f32(const float * x, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }

    dst[i] = x[i] > 0.0f;
}

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
static __global__ void gelu_f32(const float * x, float * dst, const int k) {
    const float GELU_COEF_A    = 0.044715f;
    const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }

    float xi = x[i];
    dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
}

static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
    const float GELU_QUICK_COEF = -1.702f;
    const int i  = blockDim.x*blockIdx.x + threadIdx.x;
    if (i >= k) {
        return;
    }
    dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
}

71
static __global__ void silu_f32(const float * x, float * dst, const int k) {
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = x[i] / (1.0f + expf(-x[i]));
}

static __global__ void tanh_f32(const float * x, float * dst, int k) {
    const int i  = blockDim.x*blockIdx.x + threadIdx.x;
    if (i >= k) {
        return;
    }
    dst[i] = tanhf(x[i]);
}

static __global__ void relu_f32(const float * x, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = fmaxf(x[i], 0);
}

static __global__ void sigmoid_f32(const float * x, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = 1.0f / (1.0f + expf(-x[i]));
}

static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
}

static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
}

124
125
126
127
128
129
130
131
132
static __global__ void exp_f32(const float * x, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = expf(x[i]);
}

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
    const int i  = blockDim.x*blockIdx.x + threadIdx.x;
    if (i >= k) {
        return;
    }
    dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
}

static __global__ void sqr_f32(const float * x, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = x[i] * x[i];
}

static __global__ void sqrt_f32(const float * x, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = sqrtf(x[i]);
}

static __global__ void sin_f32(const float * x, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = sinf(x[i]);
}

static __global__ void cos_f32(const float * x, float * dst, const int k) {
    const int i = blockDim.x*blockIdx.x + threadIdx.x;

    if (i >= k) {
        return;
    }
    dst[i] = cosf(x[i]);
}

177
178
179
180
181
182
183
184
185
186
static void neg_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE;
    neg_f32<<<num_blocks, CUDA_NEG_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

static void step_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_STEP_BLOCK_SIZE - 1) / CUDA_STEP_BLOCK_SIZE;
    step_f32<<<num_blocks, CUDA_STEP_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
    gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
    gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
    silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
    tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
    relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

static void sigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_SIGMOID_BLOCK_SIZE - 1) / CUDA_SIGMOID_BLOCK_SIZE;
    sigmoid_f32<<<num_blocks, CUDA_SIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
    hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
    hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

227
228
229
230
231
static void exp_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_EXP_BLOCK_SIZE - 1) / CUDA_EXP_BLOCK_SIZE;
    exp_f32<<<num_blocks, CUDA_EXP_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
    leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
}

static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
    sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

static void sqrt_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_SQRT_BLOCK_SIZE - 1) / CUDA_SQRT_BLOCK_SIZE;
    sqrt_f32<<<num_blocks, CUDA_SQRT_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

static void sin_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_SIN_BLOCK_SIZE - 1) / CUDA_SIN_BLOCK_SIZE;
    sin_f32<<<num_blocks, CUDA_SIN_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

static void cos_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_COS_BLOCK_SIZE - 1) / CUDA_COS_BLOCK_SIZE;
    cos_f32<<<num_blocks, CUDA_COS_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    neg_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    step_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    gelu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    gelu_quick_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    tanh_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    sigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    hardsigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

397
398
399
400
401
402
403
404
405
406
407
408
409
410
void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    exp_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    float negative_slope;
    memcpy(&negative_slope, dst->op_params, sizeof(float));

    leaky_relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), negative_slope, stream);
}

void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    sqrt_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    sin_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(ggml_is_contiguous(src0));

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_F32);

    cos_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}