ggml_test.go 6.04 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
package ggml

import (
	"maps"
	"slices"
Michael Yang's avatar
Michael Yang committed
6
	"strconv"
Michael Yang's avatar
Michael Yang committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
	"strings"
	"testing"

	"github.com/google/go-cmp/cmp"
)

func TestTensorLayers(t *testing.T) {
	tensors := make(map[string]*Tensor)
	for _, name := range []string{
		"token_embd.weight",
		"blk.0.attn_k.weight",
		"blk.0.attn_output.weight",
		"blk.0.attn_q.weight",
		"blk.0.attn_v.weight",
		"blk.0.attn_norm.weight",
		"blk.0.ffn_down.weight",
		"blk.0.ffn_gate.weight",
		"blk.0.ffn_up.weight",
		"blk.0.ffn_norm.weight",
		"output_norm.weight",
		"mm.0.bias",
		"mm.0.weight",
		"v.blk.0.attn_k.weight",
		"v.blk.0.attn_output.weight",
		"v.blk.0.attn_q.weight",
		"v.blk.0.attn_v.weight",
		"v.blk.0.attn_norm.weight",
		"v.blk.0.ffn_down.weight",
		"v.blk.0.ffn_gate.weight",
		"v.blk.0.ffn_up.weight",
		"v.blk.0.ffn_norm.weight",
		"v.patch_embd.weight",
		"v.position_embd.gate",
		"v.position_embd.weight",
	} {
		tensors[name] = &Tensor{Name: name}
	}

	cases := []struct {
		name  string
		items []*Tensor
		want  map[string]Layer
	}{
		{
			name: "text",
			items: slices.Collect(func(yield func(*Tensor) bool) {
				for k, v := range tensors {
					if !strings.HasPrefix(k, "mm.") && !strings.HasPrefix(k, "v.") {
						if !yield(v) {
							return
						}
					}
				}
			}),
			want: map[string]Layer{
				"blk.0": {
					"attn_k.weight":      tensors["blk.0.attn_k.weight"],
					"attn_q.weight":      tensors["blk.0.attn_q.weight"],
					"attn_v.weight":      tensors["blk.0.attn_v.weight"],
					"attn_output.weight": tensors["blk.0.attn_output.weight"],
					"attn_norm.weight":   tensors["blk.0.attn_norm.weight"],
					"ffn_down.weight":    tensors["blk.0.ffn_down.weight"],
					"ffn_gate.weight":    tensors["blk.0.ffn_gate.weight"],
					"ffn_up.weight":      tensors["blk.0.ffn_up.weight"],
					"ffn_norm.weight":    tensors["blk.0.ffn_norm.weight"],
				},
				"token_embd":  {"weight": tensors["token_embd.weight"]},
				"output_norm": {"weight": tensors["output_norm.weight"]},
			},
		},
		{
			name: "vision",
			items: slices.Collect(func(yield func(*Tensor) bool) {
				for k, v := range tensors {
					if strings.HasPrefix(k, "mm.") || strings.HasPrefix(k, "v.") {
						if !yield(v) {
							return
						}
					}
				}
			}),
			want: map[string]Layer{
				"mm.0": {
					"bias":   tensors["mm.0.bias"],
					"weight": tensors["mm.0.weight"],
				},
				"v.blk.0": {
					"attn_k.weight":      tensors["v.blk.0.attn_k.weight"],
					"attn_q.weight":      tensors["v.blk.0.attn_q.weight"],
					"attn_v.weight":      tensors["v.blk.0.attn_v.weight"],
					"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
					"attn_norm.weight":   tensors["v.blk.0.attn_norm.weight"],
					"ffn_down.weight":    tensors["v.blk.0.ffn_down.weight"],
					"ffn_gate.weight":    tensors["v.blk.0.ffn_gate.weight"],
					"ffn_up.weight":      tensors["v.blk.0.ffn_up.weight"],
					"ffn_norm.weight":    tensors["v.blk.0.ffn_norm.weight"],
				},
				"v": {
					"patch_embd.weight":    tensors["v.patch_embd.weight"],
					"position_embd.gate":   tensors["v.position_embd.gate"],
					"position_embd.weight": tensors["v.position_embd.weight"],
				},
			},
		},
		{
			name:  "vision and text",
			items: slices.Collect(maps.Values(tensors)),
			want: map[string]Layer{
				"blk.0": {
					"attn_k.weight":      tensors["blk.0.attn_k.weight"],
					"attn_q.weight":      tensors["blk.0.attn_q.weight"],
					"attn_v.weight":      tensors["blk.0.attn_v.weight"],
					"attn_output.weight": tensors["blk.0.attn_output.weight"],
					"attn_norm.weight":   tensors["blk.0.attn_norm.weight"],
					"ffn_down.weight":    tensors["blk.0.ffn_down.weight"],
					"ffn_gate.weight":    tensors["blk.0.ffn_gate.weight"],
					"ffn_up.weight":      tensors["blk.0.ffn_up.weight"],
					"ffn_norm.weight":    tensors["blk.0.ffn_norm.weight"],
				},
				"token_embd":  {"weight": tensors["token_embd.weight"]},
				"output_norm": {"weight": tensors["output_norm.weight"]},
				"mm.0": {
					"bias":   tensors["mm.0.bias"],
					"weight": tensors["mm.0.weight"],
				},
				"v.blk.0": {
					"attn_k.weight":      tensors["v.blk.0.attn_k.weight"],
					"attn_q.weight":      tensors["v.blk.0.attn_q.weight"],
					"attn_v.weight":      tensors["v.blk.0.attn_v.weight"],
					"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
					"attn_norm.weight":   tensors["v.blk.0.attn_norm.weight"],
					"ffn_down.weight":    tensors["v.blk.0.ffn_down.weight"],
					"ffn_gate.weight":    tensors["v.blk.0.ffn_gate.weight"],
					"ffn_up.weight":      tensors["v.blk.0.ffn_up.weight"],
					"ffn_norm.weight":    tensors["v.blk.0.ffn_norm.weight"],
				},
				"v": {
					"patch_embd.weight":    tensors["v.patch_embd.weight"],
					"position_embd.gate":   tensors["v.position_embd.gate"],
					"position_embd.weight": tensors["v.position_embd.weight"],
				},
			},
		},
	}

	for _, tt := range cases {
		t.Run(tt.name, func(t *testing.T) {
			got := Tensors{items: tt.items}.GroupLayers()
			if diff := cmp.Diff(got, tt.want); diff != "" {
				t.Errorf("unexpected layers (-got +want):\n%s", diff)
			}
		})
	}
}
Michael Yang's avatar
Michael Yang committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

// ref: https://github.com/ggml-org/llama.cpp/blob/a82c9e7c23ef6db48cebfa194dc9cebbc4ac3552/ggml/src/ggml.c#L572
func TestTensorTypes(t *testing.T) {
	cases := []struct {
		kind      uint32
		blockSize uint64
		typeSize  uint64
	}{
		{0, 1, 4},
		{1, 1, 2},
		{2, 32, 18},
		{3, 32, 20},
		{6, 32, 22},
		{7, 32, 24},
		{8, 32, 34},
		{9, 32, 36},
		{10, 256, 84},
		{11, 256, 110},
		{12, 256, 144},
		{13, 256, 176},
		{14, 256, 210},
		{15, 256, 292},
		{16, 256, 66},
		{17, 256, 74},
		{18, 256, 98},
		{19, 256, 50},
		{20, 32, 18},
		{21, 256, 110},
		{22, 256, 82},
		{23, 256, 136},
		{24, 1, 1},
		{25, 1, 2},
		{26, 1, 4},
		{27, 1, 8},
		{28, 1, 8},
		{29, 256, 56},
		{30, 1, 2},
	}

	for _, tt := range cases {
		t.Run(strconv.Itoa(int(tt.kind)), func(t *testing.T) {
			tensor := Tensor{Kind: tt.kind}
			if tensor.blockSize() != tt.blockSize {
				t.Errorf("unexpected block size: got=%d want=%d", tensor.blockSize(), tt.blockSize)
			}

			if tensor.typeSize() != tt.typeSize {
				t.Errorf("unexpected type size: got=%d want=%d", tensor.typeSize(), tt.typeSize)
			}
		})
	}
}