llama-kv-cache.cpp 43.6 KB
Newer Older
1
2
3
4
5
6
7
8
#include "llama-kv-cache.h"

#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-model.h"

#include <algorithm>
9
#include <cassert>
10
11
#include <limits>
#include <map>
12
#include <stdexcept>
13

14
llama_kv_cache_unified::llama_kv_cache_unified(const llama_hparams & hparams, callbacks cbs) : hparams(hparams), cbs(std::move(cbs)) {
15
16
}

17
18
19
20
21
22
23
bool llama_kv_cache_unified::init(
        const llama_model & model,
      const llama_cparams & cparams,
                ggml_type   type_k,
                ggml_type   type_v,
                 uint32_t   kv_size,
                     bool   offload) {
24
25
    const int32_t n_layer = hparams.n_layer;

26
    has_shift = false;
27

28
29
    recurrent = llama_model_is_recurrent(&model);
    v_trans   = !recurrent && !cparams.flash_attn;
30
    can_shift = !recurrent;
31
32

    LLAMA_LOG_INFO("%s: kv_size = %d, offload = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d\n",
33
            __func__, kv_size, offload, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, can_shift);
34

35
36
37
    head = 0;
    size = kv_size;
    used = 0;
38

39
40
    this->type_k = type_k;
    this->type_v = type_v;
41

42
43
    cells.clear();
    cells.resize(kv_size);
44
45
46
47
48
49

    // create a context for each buffer type
    std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
    auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
        auto it = ctx_map.find(buft);
        if (it == ctx_map.end()) {
50
            ggml_init_params params = {
51
52
53
54
                /*.mem_size   =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
                /*.mem_buffer =*/ NULL,
                /*.no_alloc   =*/ true,
            };
55

56
57
58
59
            ggml_context * ctx = ggml_init(params);
            if (!ctx) {
                return nullptr;
            }
60

61
            ctx_map[buft] = ctx;
62
63
            ctxs.emplace_back(ctx);

64
65
            return ctx;
        }
66

67
68
69
        return it->second;
    };

70
71
    k_l.reserve(n_layer);
    v_l.reserve(n_layer);
72
73
74
75
76

    for (int i = 0; i < n_layer; i++) {
        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
        const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();

77
        const char * dev_name = "CPU";
78
79
80

        ggml_backend_buffer_type_t buft;
        if (offload) {
81
            auto * dev = model.dev_layer(i);
82
            buft = ggml_backend_dev_buffer_type(dev);
83
84

            dev_name = ggml_backend_dev_name(dev);
85
86
87
88
        } else {
            buft = ggml_backend_cpu_buffer_type();
        }

89
90
91
92
        LLAMA_LOG_DEBUG("%s: layer %3d: n_embd_k_gqa = %d, n_embd_v_gqa = %d, dev = %s\n", __func__,
                i, n_embd_k_gqa, n_embd_v_gqa, dev_name);

        ggml_context * ctx = ctx_for_buft(buft);
93
94
95
96
97
        if (!ctx) {
            LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__);
            return false;
        }

98
99
100
101
102
103
104
105
106
107
        ggml_tensor * k, *v;

        // for cross attention layers
        if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
            k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
            v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
        } else {
            k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
            v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
        }
108
109
        ggml_format_name(k, "cache_k_l%d", i);
        ggml_format_name(v, "cache_v_l%d", i);
110
111
        k_l.push_back(k);
        v_l.push_back(v);
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    }

    // allocate tensors and initialize the buffers to avoid NaNs in the padding
    for (auto it : ctx_map) {
        auto * buft = it.first;
        auto * ctx  = it.second;

        ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
        if (!buf) {
            LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
            return false;
        }
        ggml_backend_buffer_clear(buf, 0);
        LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        bufs.emplace_back(buf);
    }

    return true;
}

int32_t llama_kv_cache_unified::get_n_tokens() const {
    int32_t result = 0;

    for (uint32_t i = 0; i < size; i++) {
        result += cells[i].seq_id.size();
    }

    return result;
}

int32_t llama_kv_cache_unified::get_used_cells() const {
    return used;
}

size_t llama_kv_cache_unified::total_size() const {
    size_t size = 0;
    for (const auto & buf : bufs) {
        size += ggml_backend_buffer_get_size(buf.get());
    }

    return size;
}

llama_pos llama_kv_cache_unified::pos_max() const {
    llama_pos pos_max = -1;
    for (const auto & cell : cells) {
        pos_max = std::max(pos_max, cell.pos);
    }

    return pos_max;
}

void llama_kv_cache_unified::clear() {
    for (int32_t i = 0; i < (int32_t) size; ++i) {
        cells[i].pos = -1;
        cells[i].seq_id.clear();
        cells[i].src = -1;
        cells[i].tail = -1;
    }
    head = 0;
    used = 0;

    for (auto & buf : bufs) {
        ggml_backend_buffer_clear(buf.get(), 0);
    }
}

bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
    uint32_t new_head = size;

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    // models like Mamba or RWKV can't have a state partially erased
    if (recurrent) {
        if (seq_id >= (int64_t) size) {
            // could be fatal
            return false;
        }
        if (0 <= seq_id) {
            int32_t & tail_id = cells[seq_id].tail;
            if (tail_id >= 0) {
                const llama_kv_cell & cell = cells[tail_id];
                // partial intersection is invalid
                if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
                    return false;
                }
                // invalidate tails which will be cleared
                if (p0 <= cell.pos && cell.pos < p1) {
                    tail_id = -1;
                }
            }
        } else {
            // seq_id is negative, then the range should include everything or nothing
            if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
                return false;
            }
        }

        return true;
    }

    for (uint32_t i = 0; i < size; ++i) {
        if (cells[i].pos >= p0 && cells[i].pos < p1) {
            if (seq_id < 0) {
                cells[i].seq_id.clear();
            } else if (cells[i].has_seq_id(seq_id)) {
                cells[i].seq_id.erase(seq_id);
            } else {
                continue;
            }
            if (cells[i].is_empty()) {
                // keep count of the number of used cells
                if (cells[i].pos >= 0) {
                    used--;
                }

                cells[i].pos = -1;
                cells[i].src = -1;

                if (new_head == size) {
                    new_head = i;
                }
            }
        }
    }

    // If we freed up a slot, set head to it so searching can start there.
    if (new_head != size && new_head < head) {
        head = new_head;
247
248
249
250
251
    }

    return true;
}

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
    if (seq_id_src == seq_id_dst) {
        return;
    }

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    if (recurrent) {
        if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
            llama_kv_cell & tail_src = cells[seq_id_src];
            llama_kv_cell & tail_dst = cells[seq_id_dst];
            if (tail_dst.tail >= 0) {
                // clear destination seq_id if it wasn't empty
                llama_kv_cell & cell_dst = cells[tail_dst.tail];

                cell_dst.seq_id.erase(seq_id_dst);
                tail_dst.tail = -1;
                if (cell_dst.seq_id.empty()) {
                    cell_dst.pos = -1;
                    cell_dst.delta = -1;
                    cell_dst.src = -1;
                    used -= 1;
                }
            }
            if (tail_src.tail >= 0) {
                llama_kv_cell & cell_src = cells[tail_src.tail];

                cell_src.seq_id.insert(seq_id_dst);
                tail_dst.tail = tail_src.tail;
            }
        }

        return;
    }

    // otherwise, this is the KV of a Transformer-like model
    head = 0;

    for (uint32_t i = 0; i < size; ++i) {
        if (cells[i].has_seq_id(seq_id_src) && cells[i].pos >= p0 && cells[i].pos < p1) {
            cells[i].seq_id.insert(seq_id_dst);
        }
    }
}

void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) {
    uint32_t new_head = size;

    for (uint32_t i = 0; i < size; ++i) {
        if (recurrent && (llama_seq_id) i != seq_id) {
            cells[i].tail = -1;
        }

        if (!cells[i].has_seq_id(seq_id)) {
            if (cells[i].pos >= 0) {
                used--;
            }

            cells[i].pos = -1;
            cells[i].src = -1;
            cells[i].seq_id.clear();

            if (new_head == size){
                new_head = i;
            }
        } else {
            cells[i].seq_id.clear();
            cells[i].seq_id.insert(seq_id);
        }
    }

    // If we freed up a slot, set head to it so searching can start there.
    if (new_head != size && new_head < head) {
        head = new_head;
    }
}

void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
    if (delta == 0) {
        return;
    }

    uint32_t new_head = size;

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    // If there is no range then return early to avoid looping over the
    if (p0 == p1) {
        return;
    }

    if (recurrent) {
        // for Mamba-like or RWKV models, only the pos needs to be shifted
        if (0 <= seq_id && seq_id < (int64_t) size) {
            const int32_t tail_id = cells[seq_id].tail;
            if (tail_id >= 0) {
                llama_kv_cell & cell = cells[tail_id];
                if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
                    cell.pos += delta;
                }
            }
        }
        return;
    }

    for (uint32_t i = 0; i < size; ++i) {
        if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
            has_shift = true;
            cells[i].pos   += delta;
            cells[i].delta += delta;

            if (cells[i].pos < 0) {
                if (!cells[i].is_empty()) {
                    used--;
                }
                cells[i].pos = -1;
                cells[i].seq_id.clear();
                if (new_head == size) {
                    new_head = i;
                }
            }
        }
    }

    // If we freed up a slot, set head to it so searching can start there.
    // Otherwise we just start the next search from the beginning.
    head = new_head != size ? new_head : 0;
}

void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
    if (d == 1) {
        return;
    }

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    // If there is no range then return early to avoid looping over the cache.
    if (p0 == p1) {
        return;
    }

    if (recurrent) {
        // for Mamba-like or RWKV models, only the pos needs to be changed
        if (0 <= seq_id && seq_id < (int64_t) size) {
            const int32_t tail_id = cells[seq_id].tail;
            if (tail_id >= 0) {
                llama_kv_cell & cell = cells[tail_id];
                if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
                    cell.pos /= d;
                }
            }
        }

        return;
    }

    for (uint32_t i = 0; i < size; ++i) {
        if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
            has_shift = true;

            {
                llama_pos p_old = cells[i].pos;
                cells[i].pos   /= d;
                cells[i].delta += cells[i].pos - p_old;
            }
        }
    }
}

llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const {
    llama_pos result = 0;

    for (uint32_t i = 0; i < size; ++i) {
        if (cells[i].has_seq_id(seq_id)) {
            result = std::max(result, cells[i].pos);
        }
    }

    return result;
}

void llama_kv_cache_unified::defrag() {
    if (!recurrent) {
        do_defrag = true;
    }
}

void llama_kv_cache_unified::restore() {
    if (pending.ranges.empty()) {
        return;
    }

    // TODO: tmp - move to llama_kv_cache_recurrent
    if (recurrent) {
        seq_rm(-1, -1, -1);
        return;
    }

    uint32_t new_head = size;

    for (auto & range : pending.ranges) {
        for (uint32_t i = range.c0; i < range.c1; ++i) {
            cells[i].seq_id.clear();

            // keep count of the number of used cells
            if (cells[i].pos >= 0) {
                used--;
            }

            cells[i].pos = -1;
            cells[i].src = -1;
        }

        new_head = std::min(new_head, range.c0);
    }

    if (new_head != size && new_head < head) {
        head = new_head;
    }
}

void llama_kv_cache_unified::commit() {
    // TODO: tmp - move to llama_kv_cache_recurrent
    if (recurrent) {
        return;
    }

    if (pending.ranges.empty()) {
        LLAMA_LOG_WARN("%s: no pending KV cache updates to commit - might indicate a bug (ref: %s)\n",
                __func__, "https://github.com/ggml-org/llama.cpp/pull/12695");
        return;
    }

    pending.ranges.clear();
}

bool llama_kv_cache_unified::get_can_shift() const {
    return can_shift;
}

bool llama_kv_cache_unified::find_slot(
       const llama_ubatch & ubatch) {
512
513
514
    const uint32_t n_tokens = ubatch.n_tokens;
    const uint32_t n_seqs   = ubatch.n_seqs;
    const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
515

516
517
518
519
520
521
522
    // if we have enough unused cells before the current head ->
    //   better to start searching from the beginning of the cache, hoping to fill it
    if (head > used + 2*ubatch.n_tokens) {
        head = 0;
    }

    if (recurrent) {
523
524
525
526
527
        // For recurrent state architectures (like Mamba or RWKV),
        // each cache cell can store the state for a whole sequence.
        // A slot should be always be contiguous.

        // can only process batches with an equal number of new tokens in each sequence
528
        GGML_ASSERT(ubatch.equal_seqs);
529

530
        int32_t min = size - 1;
531
532
533
534
        int32_t max = 0;

        // everything should fit if all seq_ids are smaller than the max
        for (uint32_t s = 0; s < n_seqs; ++s) {
535
            const uint32_t n_seq_id = ubatch.n_seq_id[s];
536
            for (uint32_t j = 0; j < n_seq_id; ++j) {
537
                const llama_seq_id seq_id = ubatch.seq_id[s][j];
538

539
                if (seq_id < 0 || (uint32_t) seq_id >= size) {
540
541
                    // too big seq_id
                    // TODO: would it be possible to resize the cache instead?
542
543
                    LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, size);
                    return false;
544
545
                }
                if (j > 0) {
546
                    llama_kv_cell & seq = cells[seq_id];
547
                    if (seq.tail >= 0) {
548
                        llama_kv_cell & cell = cells[seq.tail];
549
550
551
552
553
554
555
                        // clear cells from seq_ids that become shared
                        // (should not normally happen, but let's handle it anyway)
                        cell.seq_id.erase(seq_id);
                        seq.tail = -1;
                        if (cell.seq_id.empty()) {
                            cell.pos = -1;
                            cell.src = -1;
556
                            used -= 1;
557
558
559
560
561
562
563
564
565
                        }
                    }
                }
            }
        }

#ifndef NDEBUG
        {
            std::vector<int32_t> tails_verif;
566
567
568
            tails_verif.assign(size, -1);
            for (uint32_t i = 0; i < size; ++i) {
                llama_kv_cell & cell = cells[i];
569
570
571
572
573
574
575
                for (llama_seq_id seq_id : cell.seq_id) {
                    if (tails_verif[seq_id] != -1) {
                        LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
                    }
                    tails_verif[seq_id] = i;
                }
            }
576
577
578
            for (uint32_t i = 0; i < size; ++i) {
                if (tails_verif[i] != cells[i].tail) {
                    LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
579
580
581
582
583
584
                }
            }
        }
#endif

        // find next empty cell
585
        uint32_t next_empty_cell = head;
586

587
588
589
        for (uint32_t i = 0; i < size; ++i) {
            if (next_empty_cell >= size) { next_empty_cell -= size; }
            llama_kv_cell & cell = cells[next_empty_cell];
590
591
592
593
594
595
            if (cell.is_empty()) { break; }
            next_empty_cell += 1;
        }

        // find usable cell range
        for (uint32_t s = 0; s < n_seqs; ++s) {
596
            const llama_seq_id seq_id = ubatch.seq_id[s][0];
597
            llama_kv_cell & seq_meta = cells[seq_id];
598
599
            bool has_cell = false;
            if (seq_meta.tail >= 0) {
600
                llama_kv_cell & cell = cells[seq_meta.tail];
601
602
603
604
605
                GGML_ASSERT(cell.has_seq_id(seq_id));
                // does this seq_id "own" the cell?
                if (cell.seq_id.size() == 1) { has_cell = true; }
            }
            if (!has_cell) {
606
                llama_kv_cell & empty_cell = cells[next_empty_cell];
607
608
609
                GGML_ASSERT(empty_cell.is_empty());
                // copy old tail into the empty cell
                if (seq_meta.tail >= 0) {
610
                    llama_kv_cell & orig_cell = cells[seq_meta.tail];
611
612
613
614
615
616
617
618
619
                    empty_cell.pos = orig_cell.pos;
                    empty_cell.src = orig_cell.src;
                    orig_cell.seq_id.erase(seq_id);
                    empty_cell.seq_id.insert(seq_id); // will be overwritten
                }
                seq_meta.tail = next_empty_cell;
                // find next empty cell
                if (s + 1 < n_seqs) {
                    next_empty_cell += 1;
620
621
622
                    for (uint32_t i = 0; i < size; ++i) {
                        if (next_empty_cell >= size) { next_empty_cell -= size; }
                        llama_kv_cell & cell = cells[next_empty_cell];
623
624
625
626
627
628
629
630
631
632
633
634
                        if (cell.is_empty()) { break; }
                        next_empty_cell += 1;
                    }
                }
            }
            if (min > seq_meta.tail) { min = seq_meta.tail; }
            if (max < seq_meta.tail) { max = seq_meta.tail; }
        }

        // gather and re-order
        for (uint32_t s = 0; s < n_seqs; ++s) {
            int32_t dst_id = s + min;
635
            int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
636
            if (dst_id != src_id) {
637
638
                llama_kv_cell & dst_cell = cells[dst_id];
                llama_kv_cell & src_cell = cells[src_id];
639
640
641
642
643
644
645

                std::swap(dst_cell.pos, src_cell.pos);
                std::swap(dst_cell.src, src_cell.src);
                std::swap(dst_cell.seq_id, src_cell.seq_id);

                // swap tails (assuming they NEVER overlap)
                for (const llama_seq_id seq_id : src_cell.seq_id) {
646
                    cells[seq_id].tail = src_id;
647
648
                }
                for (const llama_seq_id seq_id : dst_cell.seq_id) {
649
                    cells[seq_id].tail = dst_id;
650
651
652
653
654
655
                }
            }
        }

        // update the pos of the used seqs
        for (uint32_t s = 0; s < n_seqs; ++s) {
656
            const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
657
            int32_t cell_id = s + min;
658
            llama_kv_cell & cell = cells[cell_id];
659
660
661
662
663

            if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
                // What should happen when the pos backtracks or skips a value?
                // Clearing the state mid-batch would require special-casing which isn't done.
                LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
664
                    __func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
665
666
667
            }
            cell.pos = last_pos;
            cell.seq_id.clear();
668
669
            for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
                const llama_seq_id seq_id = ubatch.seq_id[s][j];
670
                cell.seq_id.insert(seq_id);
671
                cells[seq_id].tail = cell_id;
672
673
674
675
            }
        }

        // allow getting the range of used cells, from head to head + n
676
677
678
        head = min;
        n    = max - min + 1;
        used = std::count_if(cells.begin(), cells.end(),
679
680
681
            [](const llama_kv_cell& cell){ return !cell.is_empty(); });

        // sanity check
682
        return n >= n_seqs;
683
    }
684

685
686
    // otherwise, one cell per token.

687
688
689
    if (n_tokens > size) {
        LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %d\n", __func__, n_tokens, size);
        return false;
690
691
692
693
694
    }

    uint32_t n_tested = 0;

    while (true) {
695
696
697
        if (head + n_tokens > size) {
            n_tested += size - head;
            head = 0;
698
699
700
701
702
            continue;
        }

        bool found = true;
        for (uint32_t i = 0; i < n_tokens; i++) {
703
            if (cells[head + i].pos >= 0) {
704
                found = false;
705
706
                head     += i + 1;
                n_tested += i + 1;
707
708
709
710
711
712
713
714
                break;
            }
        }

        if (found) {
            break;
        }

715
        if (n_tested >= size) {
716
            //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
717
            return false;
718
719
720
721
722
723
        }
    }

    for (uint32_t s = 0; s < n_seqs; s++) {
        for (uint32_t i = 0; i < n_seq_tokens; ++i) {
            uint32_t k = s*n_seq_tokens + i;
724
            cells[head + k].pos = ubatch.pos[k];
725

726
            for (int32_t j = 0; j < ubatch.n_seq_id[s]; j++) {
727
                cells[head + k].seq_id.insert(ubatch.seq_id[s][j]);
728
729
730
731
            }
        }
    }

732
    used += n_tokens;
733

734
735
736
737
738
739
740
741
    pending.ranges.push_back({head, head + n_tokens});

    return true;
}

uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) const {
    // the FA kernels require padding to avoid extra runtime boundary checks
    return cparams.flash_attn ? 256u : 32u;
742
743
}

744
745
746
uint32_t llama_kv_cache_unified::cell_max() const {
    for (uint32_t i = size; i > 0; --i) {
        const llama_kv_cell & cell = cells[i - 1];
747
748
749
750
751
752
753
754
755

        if (cell.pos >= 0 && !cell.is_empty()) {
            return i;
        }
    }

    return 0;
}

756
757
758
759
760
size_t llama_kv_cache_unified::size_k_bytes() const {
    size_t size_k_bytes = 0;

    for (const auto & k : k_l) {
        size_k_bytes += ggml_nbytes(k);
761
762
    }

763
764
765
766
767
768
769
770
    return size_k_bytes;
}

size_t llama_kv_cache_unified::size_v_bytes() const {
    size_t size_v_bytes = 0;

    for (const auto & v : v_l) {
        size_v_bytes += ggml_nbytes(v);
771
    }
772
773

    return size_v_bytes;
774
775
}

776
777
bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
    const uint32_t n_layer = hparams.n_layer;
778

779
780
    const uint32_t n_kv   = cell_max();
    const uint32_t n_used = used;
781

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
    assert(n_used <= n_kv);

    defrag_info.moves.clear();

    // determine which KV cells to move where
    //
    //  cell i moves to ids[i]
    //
    //  if ids[i] == i || ids[i] == n_kv, then cell i is not moved
    //
    std::vector<uint32_t> ids(n_kv, n_kv);

    for (uint32_t i0 = 0; i0 < n_used; ++i0) {
        const auto & cell0 = cells[i0];

        if (!cell0.is_empty()) {
            ids[i0] = i0;

            continue;
801
        }
802
803
804
805
806
807
808
809

        // found a hole - fill it with data from the end of the cache

        uint32_t nh = 1;

        // determine the size of the hole
        while (i0 + nh < n_used && cells[i0 + nh].is_empty()) {
            nh++;
810
811
        }

812
813
814
815
816
817
818
819
        uint32_t nf = 0;
        uint32_t is = n_kv - 1;

        // starting from the end, find nh non-empty cells
        for (; is > i0; --is) {
            const auto & cell1 = cells[is];

            if (cell1.is_empty() || ids[is] != n_kv) {
820
821
822
                continue;
            }

823
824
825
826
827
            // non-empty cell which is not yet moved
            nf++;

            if (nf == nh) {
                break;
828
829
830
            }
        }

831
832
        // this can only happen if `n_used` is not accurate, which would be a bug
        GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
833

834
        nf = 0;
835

836
        uint32_t i1 = is;
837

838
839
        // are we moving a continuous block of memory?
        bool cont = false;
840

841
842
843
844
845
846
847
        // go back and move the nf cells to the hole
        for (; i1 < n_kv; ++i1) {
            auto & cell1 = cells[i1];

            if (cell1.is_empty() || ids[i1] != n_kv) {
                cont = false;
                continue;
848
849
            }

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
            // this cell goes to (i0 + nf)
            ids[i1] = i0 + nf;

            // move the cell meta data
            cells[i0 + nf] = cell1;

            // clear the old cell and move the head there
            cell1 = llama_kv_cell();
            head = n_used;

            if (!cont) {
                defrag_info.moves.push_back({i1, i0 + nf, 1});
                cont = true;
            } else {
                defrag_info.moves.back().len++;
            }

            nf++;

            if (nf == nh) {
                break;
871
872
873
            }
        }

874
875
876
877
878
879
880
        //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);

        i0 += nh - 1;
    }

    if (defrag_info.moves.size() == 0) {
        return false;
881
882
    }

883
884
885
886
    // LLAMA_LOG_DEBUG("(tmp log) KV defrag cell moves: %u\n", n_moves);

    return true;
}
887

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
    std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
    uint32_t cell_count = 0;

    // Count the number of cells with the specified seq_id
    // Find all the ranges of cells with this seq id (or all, when -1)
    uint32_t cell_range_begin = size;
    for (uint32_t i = 0; i < size; ++i) {
        const auto & cell = cells[i];
        if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
            ++cell_count;
            if (cell_range_begin == size) {
                cell_range_begin = i;
            }
        } else {
            if (cell_range_begin != size) {
                cell_ranges.emplace_back(cell_range_begin, i);
                cell_range_begin = size;
            }
907
908
        }
    }
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
    if (cell_range_begin != size) {
        cell_ranges.emplace_back(cell_range_begin, size);
    }

    // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
    uint32_t cell_count_check = 0;
    for (const auto & range : cell_ranges) {
        cell_count_check += range.second - range.first;
    }
    GGML_ASSERT(cell_count == cell_count_check);

    io.write(&cell_count, sizeof(cell_count));

    state_write_meta(io, cell_ranges, seq_id);
    state_write_data(io, cell_ranges);
924
925
}

926
927
928
void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
    uint32_t cell_count;
    io.read_to(&cell_count, sizeof(cell_count));
929

930
931
932
933
934
935
936
    bool res = true;
    res = res && state_read_meta(io, cell_count, seq_id);
    res = res && state_read_data(io, cell_count);

    if (!res) {
        if (seq_id == -1) {
            clear();
937
        } else {
938
            seq_rm(seq_id, -1, -1);
939
        }
940
        throw std::runtime_error("failed to restore kv cache");
941
942
943
    }
}

944
945
946
947
948
949
void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
    for (const auto & range : cell_ranges) {
        for (uint32_t i = range.first; i < range.second; ++i) {
            const auto & cell = cells[i];
            const llama_pos pos      = cell.pos;
            const uint32_t  n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
950

951
952
            io.write(&pos,      sizeof(pos));
            io.write(&n_seq_id, sizeof(n_seq_id));
953

954
955
956
            if (n_seq_id) {
                for (auto seq_id : cell.seq_id) {
                    io.write(&seq_id, sizeof(seq_id));
957
958
959
960
                }
            }
        }
    }
961
}
962

963
964
965
void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
    const uint32_t v_trans = this->v_trans ? 1 : 0;
    const uint32_t n_layer = hparams.n_layer;
966

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
    io.write(&v_trans, sizeof(v_trans));
    io.write(&n_layer, sizeof(n_layer));

    std::vector<uint8_t> tmp_buf;

    // Iterate and write all the keys first, each row is a cell
    // Get whole range at a time
    for (uint32_t il = 0; il < n_layer; ++il) {
        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();

        // Write key type
        const int32_t k_type_i = (int32_t)k_l[il]->type;
        io.write(&k_type_i, sizeof(k_type_i));

        // Write row size of key
        const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
        io.write(&k_size_row, sizeof(k_size_row));

        // Read each range of cells of k_size length each into tmp_buf and write out
        for (const auto & range : cell_ranges) {
            const size_t range_size = range.second - range.first;
            const size_t buf_size = range_size * k_size_row;
            io.write_tensor(k_l[il], range.first * k_size_row, buf_size);
990
991
992
        }
    }

993
994
995
    if (!v_trans) {
        for (uint32_t il = 0; il < n_layer; ++il) {
            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
996

997
998
999
            // Write value type
            const int32_t v_type_i = (int32_t)v_l[il]->type;
            io.write(&v_type_i, sizeof(v_type_i));
1000

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
            // Write row size of value
            const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
            io.write(&v_size_row, sizeof(v_size_row));

            // Read each range of cells of v_size length each into tmp_buf and write out
            for (const auto & range : cell_ranges) {
                const size_t range_size = range.second - range.first;
                const size_t buf_size = range_size * v_size_row;
                io.write_tensor(v_l[il], range.first * v_size_row, buf_size);
            }
        }
    } else {
        // When v is transposed, we also need the element size and get the element ranges from each row
        const uint32_t kv_size = size;
        for (uint32_t il = 0; il < n_layer; ++il) {
            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();

            // Write value type
            const int32_t v_type_i = (int32_t)v_l[il]->type;
            io.write(&v_type_i, sizeof(v_type_i));

            // Write element size
            const uint32_t v_size_el = ggml_type_size(v_l[il]->type);
            io.write(&v_size_el, sizeof(v_size_el));

            // Write GQA embedding size
            io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));

            // For each row, we get the element values of each cell
            for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                // Read each range of cells of v_size_el length each into tmp_buf and write out
                for (const auto & range : cell_ranges) {
                    const size_t range_size = range.second - range.first;
                    const size_t src_offset = (range.first + j * kv_size) * v_size_el;
                    const size_t buf_size = range_size * v_size_el;
                    io.write_tensor(v_l[il], src_offset, buf_size);
1037
1038
1039
1040
                }
            }
        }
    }
1041
}
1042

1043
1044
1045
bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
    if (dest_seq_id != -1) {
        // single sequence
1046

1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
        seq_rm(dest_seq_id, -1, -1);

        llama_sbatch sbatch;
        llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false);

        batch.n_tokens = cell_count;
        batch.n_seq_tokens = cell_count;
        batch.n_seqs = 1;

        for (uint32_t i = 0; i < cell_count; ++i) {
            llama_pos pos;
            uint32_t n_seq_id;

            io.read_to(&pos,      sizeof(pos));
            io.read_to(&n_seq_id, sizeof(n_seq_id));

            if (n_seq_id != 0) {
                LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
                return false;
1066
            }
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

            batch.pos[i] = pos;
        }
        batch.n_seq_id[0] = 1;
        batch.seq_id[0] = &dest_seq_id;
        if (!find_slot(batch)) {
            LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
            return false;
        }
        commit();

        // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
        // Assume that this is one contiguous block of cells
        GGML_ASSERT(head + cell_count <= size);
        GGML_ASSERT(cells[head].pos == batch.pos[0]);
        GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]);
        GGML_ASSERT(cells[head].has_seq_id(dest_seq_id));
        GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id));
    } else {
        // whole KV cache restore

        if (cell_count > size) {
            LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
            return false;
1091
1092
        }

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
        clear();

        for (uint32_t i = 0; i < cell_count; ++i) {
            llama_kv_cell & cell = cells[i];

            llama_pos pos;
            uint32_t  n_seq_id;

            io.read_to(&pos,      sizeof(pos));
            io.read_to(&n_seq_id, sizeof(n_seq_id));

            cell.pos = pos;
1105

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
            for (uint32_t j = 0; j < n_seq_id; ++j) {
                llama_seq_id seq_id;
                io.read_to(&seq_id, sizeof(seq_id));

                // TODO: llama_kv_cache_unified should have a notion of max sequences
                //if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
                if (seq_id < 0) {
                    //LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
                    LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id);
                    return false;
                }

                cell.seq_id.insert(seq_id);

                if (recurrent) {
                    int32_t & tail = cells[seq_id].tail;
                    if (tail != -1) {
                        LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
                        return false;
                    }
                    tail = i;
                }
            }
1129
        }
1130
1131
1132

        head = 0;
        used = cell_count;
1133
1134
    }

1135
1136
1137
1138
1139
1140
1141
1142
1143
    if (recurrent) {
        for (uint32_t i = 0; i < cell_count; ++i) {
            uint32_t cell_id = head + i;
            // make sure the recurrent states will keep their restored state
            cells[cell_id].src = cell_id;
        }
    }

    return true;
1144
1145
}

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
    uint32_t v_trans;
    uint32_t n_layer;
    io.read_to(&v_trans, sizeof(v_trans));
    io.read_to(&n_layer, sizeof(n_layer));

    if (n_layer != hparams.n_layer) {
        LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
        return false;
    }
    if (cell_count > size) {
        LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
        return false;
    }
    if (v_trans != (bool) v_trans) {
        LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
        return false;
1163
1164
    }

1165
1166
1167
    // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
    for (uint32_t il = 0; il < n_layer; ++il) {
        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
1168

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
        // Read type of key
        int32_t k_type_i_ref;
        io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
        const int32_t k_type_i = (int32_t) k_l[il]->type;
        if (k_type_i != k_type_i_ref) {
            LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
            return false;
        }

        // Read row size of key
        uint64_t k_size_row_ref;
        io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
        const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
        if (k_size_row != k_size_row_ref) {
            LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
            return false;
        }

        if (cell_count) {
            // Read and set the keys for the whole cell range
            ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
        }
1191
1192
    }

1193
1194
1195
    if (!v_trans) {
        for (uint32_t il = 0; il < n_layer; ++il) {
            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
1196

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
            // Read type of value
            int32_t v_type_i_ref;
            io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
            const int32_t v_type_i = (int32_t)v_l[il]->type;
            if (v_type_i != v_type_i_ref) {
                LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
                return false;
            }

            // Read row size of value
            uint64_t v_size_row_ref;
            io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
            const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
            if (v_size_row != v_size_row_ref) {
                LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
                return false;
            }
1214

1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
            if (cell_count) {
                // Read and set the values for the whole cell range
                ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
            }
        }
    } else {
        // For each layer, read the values for each cell (transposed)
        for (uint32_t il = 0; il < n_layer; ++il) {
            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();

            // Read type of value
            int32_t v_type_i_ref;
            io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
            const int32_t v_type_i = (int32_t)v_l[il]->type;
            if (v_type_i != v_type_i_ref) {
                LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
                return false;
            }

            // Read element size of value
            uint32_t v_size_el_ref;
            io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
            const size_t v_size_el = ggml_type_size(v_l[il]->type);
            if (v_size_el != v_size_el_ref) {
                LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
                return false;
            }

            // Read GQA embedding size
            uint32_t n_embd_v_gqa_ref;
            io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
            if (n_embd_v_gqa != n_embd_v_gqa_ref) {
                LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
                return false;
            }

            if (cell_count) {
                // For each row in the transposed matrix, read the values for the whole cell range
                for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                    const size_t dst_offset = (head + j * size) * v_size_el;
                    ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
                }
            }
        }
    }

    return true;
1262
1263
1264
1265
1266
1267
}

//
// kv cache view
//

1268
1269
llama_kv_cache_view llama_kv_cache_view_init(const llama_kv_cache & kv, int32_t n_seq_max) {
    llama_kv_cache_view result = {
1270
1271
1272
        /*.n_cells            = */ 0,
        /*.n_seq_max          = */ n_seq_max,
        /*.token_count        = */ 0,
1273
        /*.used_cells         = */ kv.get_used_cells(),
1274
1275
1276
1277
1278
1279
1280
1281
1282
        /*.max_contiguous     = */ 0,
        /*.max_contiguous_idx = */ -1,
        /*.cells              = */ nullptr,
        /*.cells_sequences    = */ nullptr,
    };

    return result;
}

1283
void llama_kv_cache_view_free(llama_kv_cache_view * view) {
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
    if (view->cells != nullptr) {
        free(view->cells);
        view->cells = nullptr;
    }
    if (view->cells_sequences != nullptr) {
        free(view->cells_sequences);
        view->cells_sequences = nullptr;
    }
}

1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache * kv) {
    // TODO: rework this in the future, for now quick hack
    const llama_kv_cache_unified * kvu = dynamic_cast<const llama_kv_cache_unified *>(kv);
    if (kvu == nullptr) {
        LLAMA_LOG_ERROR("%s: the kv_cache_view currently works only with llama_kv_cache_unified\n", __func__);
        return;
    }

    if (uint32_t(view->n_cells) < kvu->size || view->cells == nullptr) {
        view->n_cells = int32_t(kvu->size);
        void * p = realloc(view->cells, sizeof(llama_kv_cache_view_cell) * view->n_cells);
1305
        GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
1306
        view->cells = (llama_kv_cache_view_cell *)p;
1307
1308
1309
1310
1311
        p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
        GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
        view->cells_sequences = (llama_seq_id *)p;
    }

1312
    const std::vector<llama_kv_cell> & kv_cells = kvu->cells;
1313
1314
1315
1316
1317
1318
1319
1320
    llama_kv_cache_view_cell * c_curr = view->cells;
    llama_seq_id * cs_curr = view->cells_sequences;
    int32_t used_cells = 0;
    int32_t token_count = 0;
    int32_t curr_contig_idx = -1;
    uint32_t max_contig = 0;
    int32_t max_contig_idx = -1;

1321
    for (int32_t i = 0; i < int32_t(kvu->size); i++, c_curr++, cs_curr += view->n_seq_max) {
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
        const size_t curr_size = kv_cells[i].seq_id.size();
        token_count += curr_size;
        c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;

        if (curr_size > 0) {
            if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
                max_contig = i - curr_contig_idx;
                max_contig_idx = curr_contig_idx;
            }
            curr_contig_idx = -1;
        } else if (curr_contig_idx < 0) {
            curr_contig_idx = i;
        }

        int seq_idx = 0;
        for (const llama_seq_id it : kv_cells[i].seq_id) {
            if (seq_idx >= view->n_seq_max) {
                break;
            }
            cs_curr[seq_idx] = it;
            seq_idx++;
        }
        if (seq_idx != 0) {
            used_cells++;
        }
        for (; seq_idx < view->n_seq_max; seq_idx++) {
            cs_curr[seq_idx] = -1;
        }
    }
    if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
        max_contig_idx = curr_contig_idx;
        max_contig = kv_cells.size() - curr_contig_idx;
    }
    view->max_contiguous = max_contig;
    view->max_contiguous_idx = max_contig_idx;
    view->token_count = token_count;
    view->used_cells = used_cells;
1359
    if (uint32_t(used_cells) != kvu->used) {
1360
        LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
1361
            __func__, kvu->used, used_cells);
1362
1363
    }
}