embed.go 2.21 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
package qwen3

import (
	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn/pooling"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type embedModel struct {
	model.Base
	model.BytePairEncoding

	*Model
	poolingType pooling.Type
}

func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
	hiddenStates, err := m.forward(ctx, batch)
	if err != nil {
		return nil, err
	}

	hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
	hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
	return hiddenStates, nil
}

func newEmbed(c fs.Config) (model.Model, error) {
	layers := make([]Layer, c.Uint("block_count"))
	for i := range layers {
		layers[i].MLP = &dense{}
	}
	m := embedModel{
		BytePairEncoding: model.NewBytePairEncoding(
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Ints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
				BOS:    []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
				EOS: append(
					[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
					c.Ints("tokenizer.ggml.eos_token_ids")...,
				),
			},
50
			`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
Michael Yang's avatar
Michael Yang committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
		),
		Model: &Model{
			Layers: layers,
			Options: &Options{
				hiddenSize:     int(c.Uint("embedding_length")),
				numHeads:       int(c.Uint("attention.head_count")),
				numKVHeads:     int(c.Uint("attention.head_count_kv")),
				keyLength:      int(c.Uint("attention.key_length")),
				valueLength:    int(c.Uint("attention.value_length")),
				eps:            c.Float("attention.layer_norm_rms_epsilon"),
				ropeBase:       c.Float("rope.freq_base"),
				ropeScale:      c.Float("rope.freq_scale", 1),
				numExperts:     int(c.Uint("expert_count")),
				numExpertsUsed: int(c.Uint("expert_used_count")),
				normTopKProb:   c.Bool("norm_top_k_prob", true),
			},
		},
		poolingType: pooling.Type(c.Uint("pooling_type")),
	}

	m.Cache = kvcache.NewCausalCache(m.Shift)
	return &m, nil
}