model.go 5.38 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
package llama

import (
4
	"fmt"
Michael Yang's avatar
Michael Yang committed
5
	"math"
6
	"strings"
Michael Yang's avatar
Michael Yang committed
7

Jesse Gross's avatar
Jesse Gross committed
8
	"github.com/ollama/ollama/kvcache"
Michael Yang's avatar
Michael Yang committed
9
10
11
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
12
	"github.com/ollama/ollama/model/input"
Michael Yang's avatar
Michael Yang committed
13
14
15
)

type Options struct {
16
	hiddenSize, numHeads, numKVHeads int
Michael Yang's avatar
Michael Yang committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
	eps, ropeBase, ropeScale         float32
	ropeDim                          uint32
}

type Model struct {
	model.Base
	model.BytePairEncoding

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	*Options
}

func New(c ml.Config) (model.Model, error) {
34
35
36
37
	if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
		return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
	}

Jesse Gross's avatar
Jesse Gross committed
38
	m := Model{
Michael Yang's avatar
Michael Yang committed
39
40
41
42
43
44
		BytePairEncoding: model.NewBytePairEncoding(
			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Uints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
45
				BOS:    int32(c.Uint("tokenizer.ggml.bos_token_id")),
46
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
47
				EOS:    int32(c.Uint("tokenizer.ggml.eos_token_id")),
48
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
Michael Yang's avatar
Michael Yang committed
49
50
51
52
			},
		),
		Layers: make([]Layer, c.Uint("block_count")),
		Options: &Options{
53
54
55
			hiddenSize: int(c.Uint("embedding_length")),
			numHeads:   int(c.Uint("attention.head_count")),
			numKVHeads: int(c.Uint("attention.head_count_kv")),
Michael Yang's avatar
Michael Yang committed
56
57
58
59
60
			eps:        c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:   c.Float("rope.freq_base"),
			ropeScale:  c.Float("rope.freq_scale", 1),
			ropeDim:    c.Uint("rope.dimension_count"),
		},
Jesse Gross's avatar
Jesse Gross committed
61
62
63
64
65
	}

	m.Cache = kvcache.NewCausalCache(m.Shift)

	return &m, nil
Michael Yang's avatar
Michael Yang committed
66
67
68
}

type SelfAttention struct {
69
70
71
72
73
	Query       *nn.Linear `gguf:"attn_q"`
	Key         *nn.Linear `gguf:"attn_k"`
	Value       *nn.Linear `gguf:"attn_v"`
	Output      *nn.Linear `gguf:"attn_output"`
	RopeFactors ml.Tensor  `gguf:"rope_freqs.weight"`
Michael Yang's avatar
Michael Yang committed
74
75
}

Jesse Gross's avatar
Jesse Gross committed
76
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
77
78
79
80
81
	batchSize := hiddenState.Dim(1)
	headDim := opts.hiddenSize / opts.numHeads

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
82
	q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
Michael Yang's avatar
Michael Yang committed
83
84
85

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
86
	k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
Michael Yang's avatar
Michael Yang committed
87
88
89
90

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

91
	scaleFactor := 1.0 / math.Sqrt(float64(headDim))
92
	kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
Michael Yang's avatar
Michael Yang committed
93
94
95
96
97
	kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)

	return sa.Output.Forward(ctx, kqv)
}

Jesse Gross's avatar
Jesse Gross committed
98
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
99
	return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, m.ropeDim, m.ropeBase, m.ropeScale), nil
Jesse Gross's avatar
Jesse Gross committed
100
101
}

Michael Yang's avatar
Michael Yang committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention *SelfAttention
	MLPNorm       *nn.RMSNorm `gguf:"ffn_norm"`
	MLP           *MLP
}

120
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
121
122
123
124
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
125
126
127
128
129
130
131
132

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

Michael Yang's avatar
Michael Yang committed
133
134
135
136
137
138
139
140
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	return hiddenState.Add(ctx, residual)
}

141
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
142
	inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
Michael Yang's avatar
Michael Yang committed
143
144
145
146
	if err != nil {
		return nil, err
	}

147
	positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
Michael Yang's avatar
Michael Yang committed
148
149
150
151
	if err != nil {
		return nil, err
	}

152
	outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
153
154
155
156
	if err != nil {
		return nil, err
	}

Michael Yang's avatar
Michael Yang committed
157
158
159
	hiddenState := m.TokenEmbedding.Forward(ctx, inputs)

	for i, layer := range m.Layers {
Jesse Gross's avatar
Jesse Gross committed
160
		m.Cache.SetLayer(i)
Michael Yang's avatar
Michael Yang committed
161

162
163
164
165
		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}
Michael Yang's avatar
Michael Yang committed
166

167
		hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
Michael Yang's avatar
Michael Yang committed
168
169
	}

170
171
	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	return m.Output.Forward(ctx, hiddenState), nil
Michael Yang's avatar
Michael Yang committed
172
173
174
175
176
}

func init() {
	model.Register("llama", New)
}