model.go 9.14 KB
Newer Older
Michael Yang's avatar
gpt-oss  
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
package gptoss

import (
	"cmp"
	"math"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/ml/nn/fast"
	"github.com/ollama/ollama/ml/nn/rope"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Transformer struct {
	model.Base
	model.BytePairEncoding

	TokenEmbedding    *nn.Embedding      `gguf:"token_embd"`
	TransformerBlocks []TransformerBlock `gguf:"blk"`
	OutputNorm        *nn.RMSNorm        `gguf:"output_norm"`
	Output            *nn.Linear         `gguf:"output,alt:token_embd"`

	Options
}

// Forward implements model.Model.
func (m *Transformer) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
	hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
	positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))

	one := ctx.Input().FromFloatSlice([]float32{1}, 1)
	for i, block := range m.TransformerBlocks {
		m.Cache.SetLayer(i)
		if c, ok := m.Cache.(*kvcache.WrapperCache); ok {
			// Even layers are sliding window attention.
			c.SetLayerType(i % 2)
		}

		var outputs ml.Tensor
		if len(batch.Outputs) > 0 && i == len(m.TransformerBlocks)-1 {
			outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
		}

		hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, one, m.Cache, &m.Options)
	}

	hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
	return m.Output.Forward(ctx, hiddenStates), nil
}

func (m *Transformer) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, 1./m.ropeScale, m.RoPEOptions()...), nil
}

type Options struct {
	hiddenSize,
	numHeads,
	numKVHeads,
	keyLength,
	valueLength,
	numExperts,
	numExpertsUsed,
	originalContextLength int

	eps,
	ropeBase,
	ropeScale float32
}

func (o Options) RoPEOptions() []func(*rope.Options) {
	return []func(*rope.Options){
		rope.WithTypeNeoX(),
		rope.WithOriginalContextLength(o.originalContextLength),
		rope.WithExtrapolationFactor(1.),
		// NOTE: ggml sets this implicitly so there's no need to set it here
		// rope.WithAttentionFactor(0.1*float32(math.Log(float64(o.ropeScale))) + 1.0),
	}
}

func (o Options) headDim() int {
	return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}

type TransformerBlock struct {
	Attention *AttentionBlock
	MLP       *MLPBlock
}

func (d *TransformerBlock) Forward(ctx ml.Context, hiddenStates, positions, outputs, one ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
	if outputs != nil {
		hiddenStates = hiddenStates.Rows(ctx, outputs)
	}

	hiddenStates = d.MLP.Forward(ctx, hiddenStates, one, opts)
	return hiddenStates
}

type AttentionBlock struct {
	Norm   *nn.RMSNorm `gguf:"attn_norm"`
	QKV    *nn.Linear  `gguf:"attn_qkv"`
	Output *nn.Linear  `gguf:"attn_out"`
	Sinks  ml.Tensor   `gguf:"attn_sinks"`
}

func (attn *AttentionBlock) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	batchSize := hiddenStates.Dim(1)

	residual := hiddenStates
	hiddenStates = attn.Norm.Forward(ctx, hiddenStates, opts.eps)

	qkv := attn.QKV.Forward(ctx, hiddenStates)

	// query = qkv[..., : num_attention_heads * head_dim].reshape(batch_size, num_attention_heads, head_dim)
	query := qkv.View(ctx,
		0,
		opts.headDim(), qkv.Stride(0)*opts.headDim(),
		opts.numHeads, qkv.Stride(1),
		batchSize,
	)
	query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)

	// key = qkv[..., num_attention_heads * head_dim:(num_attention_heads + num_key_value_heads) * head_dim].reshape(batch_size, num_key_value_heads, head_dim)
	key := qkv.View(ctx,
		qkv.Stride(0)*opts.headDim()*opts.numHeads,
		opts.headDim(), qkv.Stride(0)*opts.headDim(),
		opts.numKVHeads, qkv.Stride(1),
		batchSize,
	)
	key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)

	// value = qkv[..., (num_attention_heads  + num_key_value_heads) * head_dim:].reshape(batch_size, num_key_value_heads, head_dim)
	value := qkv.View(ctx,
		qkv.Stride(0)*opts.headDim()*(opts.numHeads+opts.numKVHeads),
		opts.headDim(), qkv.Stride(0)*opts.headDim(),
		opts.numKVHeads, qkv.Stride(1),
		batchSize,
	)

	cache.Put(ctx, key, value)
	key, value, mask := cache.Get(ctx)

	query = query.Permute(ctx, 0, 2, 1, 3)
	key = key.Permute(ctx, 0, 2, 1, 3)
	value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

	scores := key.MulmatFullPrec(ctx, query)
	scores = scores.Scale(ctx, 1./math.Sqrt(float64(opts.headDim())))
	scores = scores.Add(ctx, mask)

	scores = scores.Concat(ctx, attn.Sinks.Reshape(ctx, 1, 1, opts.numHeads, 1).Repeat(ctx, 1, batchSize), 0)
	scores = scores.Softmax(ctx)
	scores = scores.Pad(ctx, -1, 0, 0, 0)

	attention := value.Mulmat(ctx, scores)
	attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)

	return attn.Output.Forward(ctx, attention).Add(ctx, residual)
}

type MLPBlock struct {
	Norm   *nn.RMSNorm     `gguf:"ffn_norm"`
	Router *nn.Linear      `gguf:"ffn_gate_inp"`
	GateUp *nn.LinearBatch `gguf:"ffn_gate_up_exps"`
	Down   *nn.LinearBatch `gguf:"ffn_down_exps"`
}

func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates, one ml.Tensor, opts *Options) ml.Tensor {
	hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)

	residual := hiddenStates
	hiddenStates = mlp.Norm.Forward(ctx, hiddenStates, opts.eps)

	hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
	routingWeights := mlp.Router.Forward(ctx, hiddenStates)

	selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
	routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, sequenceLength*batchSize).Rows(ctx, selectedExperts)
	routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, sequenceLength*batchSize).Softmax(ctx)
	routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, sequenceLength*batchSize)

	hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))

	hiddenStates = mlp.GateUp.Forward(ctx, hiddenStates, selectedExperts)
	hiddenStates = hiddenStates.Reshape(ctx, 2, hiddenStates.Dim(0)/2, hiddenStates.Dim(1), hiddenStates.Dim(2))

	dimStride := []int{hiddenStates.Dim(0) / 2, hiddenStates.Stride(1), hiddenStates.Dim(1), hiddenStates.Stride(2), hiddenStates.Dim(2), hiddenStates.Stride(3), hiddenStates.Dim(3)}

Michael Yang's avatar
Michael Yang committed
193
194
195
196
197
198
199
200
201
	glu := hiddenStates.View(ctx, 0, dimStride...)
	glu = glu.Contiguous(ctx)
	glu = glu.Clamp(ctx, float32(math.Inf(-1)), 7.0)
	glu = glu.QuickGELU(ctx)

	linear := hiddenStates.View(ctx, hiddenStates.Stride(0), dimStride...)
	linear = linear.Clamp(ctx, -7.0, 7.0)

	hiddenStates = glu.Mul(ctx, linear.Add(ctx, one))
Michael Yang's avatar
gpt-oss  
Michael Yang committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
	hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)*hiddenStates.Dim(1), hiddenStates.Dim(2), hiddenStates.Dim(3))

	experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
	experts = experts.Mul(ctx, routingWeights)

	nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
	for i := 1; i < opts.numExpertsUsed; i++ {
		nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
	}

	return nextStates.Add(ctx, residual)
}

func New(c fs.Config) (model.Model, error) {
	m := Transformer{
		TransformerBlocks: make([]TransformerBlock, c.Uint("block_count")),
		BytePairEncoding: model.NewBytePairEncoding(
			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Ints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
				BOS:    []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
				EOS: append(
					[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
					c.Ints("tokenizer.ggml.eos_token_ids")...,
				),
			},
		),
		Options: Options{
			hiddenSize:            int(c.Uint("embedding_length")),
			numHeads:              int(c.Uint("attention.head_count")),
			numKVHeads:            int(c.Uint("attention.head_count_kv")),
			keyLength:             int(c.Uint("attention.key_length")),
			valueLength:           int(c.Uint("attention.value_length")),
			numExperts:            int(c.Uint("expert_count")),
			numExpertsUsed:        int(c.Uint("expert_used_count")),
			eps:                   c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:              c.Float("rope.freq_base"),
			ropeScale:             c.Float("rope.scaling.factor", 1.),
			originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
		},
	}

	m.Cache = kvcache.NewWrapperCache(
		kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift),
		kvcache.NewCausalCache(m.Shift),
	)
	m.Cache.SetConfig(ml.CacheConfig{})
	return &m, nil
}

func init() {
	model.Register("gptoss", New)
}