mmq.cu 5.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/**
 * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
 *
 * MIT License
 *
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "mmq.cuh"

void ggml_cuda_op_mul_mat_q(
    ggml_backend_cuda_context & ctx,
    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
    const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
    const int64_t src1_padded_row_size, cudaStream_t stream) {

    const int64_t ne00 = src0->ne[0];

    const int64_t nb01 = src0->nb[1];

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];
    GGML_ASSERT(ne10 % QK8_1 == 0);

    const int64_t ne0 = dst->ne[0];

    const int64_t row_diff = row_high - row_low;
    const int64_t stride00 = nb01 / ggml_type_size(src0->type);

    int id = ggml_cuda_get_device();
    const int compute_capability = ggml_cuda_info().devices[id].cc;

    // the main device has a larger memory buffer to hold the results from all GPUs
    // nrows_dst == nrows of the matrix that the kernel writes into
    const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;

    const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst};

    switch (src0->type) {
        case GGML_TYPE_Q4_0:
            mul_mat_q_case<GGML_TYPE_Q4_0>(ctx, args, stream);
            break;
        case GGML_TYPE_Q4_1:
            mul_mat_q_case<GGML_TYPE_Q4_1>(ctx, args, stream);
            break;
        case GGML_TYPE_Q5_0:
            mul_mat_q_case<GGML_TYPE_Q5_0>(ctx, args, stream);
            break;
        case GGML_TYPE_Q5_1:
            mul_mat_q_case<GGML_TYPE_Q5_1>(ctx, args, stream);
            break;
        case GGML_TYPE_Q8_0:
            mul_mat_q_case<GGML_TYPE_Q8_0>(ctx, args, stream);
            break;
        case GGML_TYPE_Q2_K:
            mul_mat_q_case<GGML_TYPE_Q2_K>(ctx, args, stream);
            break;
        case GGML_TYPE_Q3_K:
            mul_mat_q_case<GGML_TYPE_Q3_K>(ctx, args, stream);
            break;
        case GGML_TYPE_Q4_K:
            mul_mat_q_case<GGML_TYPE_Q4_K>(ctx, args, stream);
            break;
        case GGML_TYPE_Q5_K:
            mul_mat_q_case<GGML_TYPE_Q5_K>(ctx, args, stream);
            break;
        case GGML_TYPE_Q6_K:
            mul_mat_q_case<GGML_TYPE_Q6_K>(ctx, args, stream);
            break;
        case GGML_TYPE_IQ2_XXS:
            mul_mat_q_case<GGML_TYPE_IQ2_XXS>(ctx, args, stream);
            break;
        case GGML_TYPE_IQ2_XS:
            mul_mat_q_case<GGML_TYPE_IQ2_XS>(ctx, args, stream);
            break;
        case GGML_TYPE_IQ2_S:
            mul_mat_q_case<GGML_TYPE_IQ2_S>(ctx, args, stream);
            break;
        case GGML_TYPE_IQ3_XXS:
            mul_mat_q_case<GGML_TYPE_IQ3_XXS>(ctx, args, stream);
            break;
        case GGML_TYPE_IQ3_S:
            mul_mat_q_case<GGML_TYPE_IQ3_S>(ctx, args, stream);
            break;
        case GGML_TYPE_IQ1_S:
            mul_mat_q_case<GGML_TYPE_IQ1_S>(ctx, args, stream);
            break;
        case GGML_TYPE_IQ4_XS:
            mul_mat_q_case<GGML_TYPE_IQ4_XS>(ctx, args, stream);
            break;
        case GGML_TYPE_IQ4_NL:
            mul_mat_q_case<GGML_TYPE_IQ4_NL>(ctx, args, stream);
            break;
        default:
            GGML_ABORT("fatal error");
            break;
    }

    GGML_UNUSED(src1);
    GGML_UNUSED(dst);
    GGML_UNUSED(src1_ddf_i);
}

bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
#ifdef GGML_CUDA_FORCE_CUBLAS
    return false;
#endif // GGML_CUDA_FORCE_CUBLAS

    bool mmq_supported;

    switch (type) {
        case GGML_TYPE_Q4_0:
        case GGML_TYPE_Q4_1:
        case GGML_TYPE_Q5_0:
        case GGML_TYPE_Q5_1:
        case GGML_TYPE_Q8_0:
        case GGML_TYPE_Q2_K:
        case GGML_TYPE_Q3_K:
        case GGML_TYPE_Q4_K:
        case GGML_TYPE_Q5_K:
        case GGML_TYPE_Q6_K:
        case GGML_TYPE_IQ2_XXS:
        case GGML_TYPE_IQ2_XS:
        case GGML_TYPE_IQ2_S:
        case GGML_TYPE_IQ3_XXS:
        case GGML_TYPE_IQ3_S:
        case GGML_TYPE_IQ1_S:
        case GGML_TYPE_IQ4_XS:
        case GGML_TYPE_IQ4_NL:
            mmq_supported = true;
            break;
        default:
            mmq_supported = false;
            break;
    }

    if (!mmq_supported) {
        return false;
    }

    if (int8_mma_available(cc)) {
        return true;
    }

    if (cc < MIN_CC_DP4A) {
        return false;
    }

#ifdef GGML_CUDA_FORCE_MMQ
    return true;
#endif //GGML_CUDA_FORCE_MMQ

    if (cc < CC_OFFSET_AMD) {
        return cc < CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
    }

    return cc < CC_RDNA3 || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}