getrows.cu 8.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/**
 * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
 *
 * MIT License
 *
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "getrows.cuh"
#include "dequantize.cuh"

template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static __global__ void k_get_rows(
            const void * src0, const int32_t * src1, dst_t * dst,
            int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
            /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
            /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
            /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
            size_t s10, size_t s11, size_t s12/*, size_t s13*/) {

    const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
    const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
    const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
    const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;

    if (i00 >= ne00) {
        return;
    }

    const int i01 = src1[i10*s10 + i11*s11 + i12*s12];

    dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
    const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;

    const int ib = i00/qk; // block index
    const int iqs = (i00%qk)/qr; // quant index
    const int iybs = i00 - i00%qk; // dst block start index
    const int y_offset = qr == 1 ? 1 : qk/2;

    // dequantize
    dfloat2 v;
    dequantize_kernel(src0_row, ib, iqs, v);

    dst_row[iybs + iqs + 0]        = v.x;
    dst_row[iybs + iqs + y_offset] = v.y;
}

template<typename src0_t, typename dst_t>
static __global__ void k_get_rows_float(
            const src0_t * src0, const int32_t * src1, dst_t * dst,
            int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
            /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
            /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
            /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
            size_t s10, size_t s11, size_t s12/*, size_t s13*/) {

    const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
    const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
    const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
    const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;

    if (i00 >= ne00) {
        return;
    }

    const int i01 = src1[i10*s10 + i11*s11 + i12*s12];

    dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
    const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);

    dst_row[i00] = src0_row[i00];
}

template<int qk, int qr, dequantize_kernel_t dq>
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
                            const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {

    GGML_TENSOR_BINARY_OP_LOCALS

    const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
    const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
    const dim3 block_nums(block_num_x, ne10, ne11*ne12);

    // strides in elements
    //const size_t s0 = nb0 / ggml_element_size(dst);
    const size_t s1 = nb1 / ggml_element_size(dst);
    const size_t s2 = nb2 / ggml_element_size(dst);
    const size_t s3 = nb3 / ggml_element_size(dst);

    const size_t s10 = nb10 / ggml_element_size(src1);
    const size_t s11 = nb11 / ggml_element_size(src1);
    const size_t s12 = nb12 / ggml_element_size(src1);
    //const size_t s13 = nb13 / ggml_element_size(src1);

    GGML_ASSERT(ne00 % 2 == 0);

    k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
            src0_dd, src1_dd, dst_dd,
            ne00, /*ne01, ne02, ne03,*/
            /*ne10, ne11,*/ ne12, /*ne13,*/
            /* s0,*/ s1, s2, s3,
            /* nb00,*/ nb01, nb02, nb03,
            s10, s11, s12/*, s13*/);

    GGML_UNUSED(dst);
}

template<typename src0_t>
static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
                                const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {

    GGML_TENSOR_BINARY_OP_LOCALS

    const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
    const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
    const dim3 block_nums(block_num_x, ne10, ne11*ne12);

    // strides in elements
    //const size_t s0 = nb0 / ggml_element_size(dst);
    const size_t s1 = nb1 / ggml_element_size(dst);
    const size_t s2 = nb2 / ggml_element_size(dst);
    const size_t s3 = nb3 / ggml_element_size(dst);

    const size_t s10 = nb10 / ggml_element_size(src1);
    const size_t s11 = nb11 / ggml_element_size(src1);
    const size_t s12 = nb12 / ggml_element_size(src1);
    //const size_t s13 = nb13 / ggml_element_size(src1);

    k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
            src0_dd, src1_dd, dst_dd,
            ne00, /*ne01, ne02, ne03,*/
            /*ne10, ne11,*/ ne12, /*ne13,*/
            /* s0,*/ s1, s2, s3,
            /* nb00,*/ nb01, nb02, nb03,
            s10, s11, s12/*, s13*/);

    GGML_UNUSED(dst);
}

void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const ggml_tensor * src1 = dst->src[1];
    const float * src0_d = (const float *)src0->data;
    const float * src1_d = (const float *)src1->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();


    GGML_ASSERT(src1->type == GGML_TYPE_I32);
    GGML_ASSERT(dst->type == GGML_TYPE_F32);

    GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
    GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
    GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));

    const int32_t * src1_i32 = (const int32_t *) src1_d;

    switch (src0->type) {
        case GGML_TYPE_F16:
            get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
            break;
        case GGML_TYPE_F32:
            get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
            break;
        case GGML_TYPE_Q4_0:
            get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
            break;
        case GGML_TYPE_Q4_1:
            get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
            break;
        case GGML_TYPE_Q5_0:
            get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
            break;
        case GGML_TYPE_Q5_1:
            get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
            break;
        case GGML_TYPE_Q8_0:
            get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
            break;
        default:
            // TODO: k-quants
            GGML_ABORT("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
            break;
    }
}