argsort.cu 4.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/**
 * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
 *
 * MIT License
 *
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "argsort.cuh"

template<typename T>
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
    T tmp = a;
    a = b;
    b = tmp;
}

template<ggml_sort_order order>
static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ncols_pad) {
    // bitonic sort
    int col = threadIdx.x;
    int row = blockIdx.y;

    if (col >= ncols_pad) {
        return;
    }

    const float * x_row = x + row * ncols;
    extern __shared__ int dst_row[];

    // initialize indices
    dst_row[col] = col;

    __syncthreads();

    for (int k = 2; k <= ncols_pad; k *= 2) {
        for (int j = k / 2; j > 0; j /= 2) {
            int ixj = col ^ j;
            if (ixj > col) {
                if ((col & k) == 0) {
                    if (dst_row[col] >= ncols ||
                        (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
                            x_row[dst_row[col]] > x_row[dst_row[ixj]] :
                            x_row[dst_row[col]] < x_row[dst_row[ixj]]))
                    ) {
                        ggml_cuda_swap(dst_row[col], dst_row[ixj]);
                    }
                } else {
                    if (dst_row[ixj] >= ncols ||
                        (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
                            x_row[dst_row[col]] < x_row[dst_row[ixj]] :
                            x_row[dst_row[col]] > x_row[dst_row[ixj]]))
                    ) {
                        ggml_cuda_swap(dst_row[col], dst_row[ixj]);
                    }
                }
            }
            __syncthreads();
        }
    }

    // copy the result to dst without the padding
    if (col < ncols) {
        dst[row * ncols + col] = dst_row[col];
    }
}

static int next_power_of_2(int x) {
    int n = 1;
    while (n < x) {
        n *= 2;
    }
    return n;
}

static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
    // bitonic sort requires ncols to be power of 2
    const int ncols_pad = next_power_of_2(ncols);

    const dim3 block_dims(ncols_pad, 1, 1);
    const dim3 block_nums(1, nrows, 1);
    const size_t shared_mem = ncols_pad * sizeof(int);

    // FIXME: this limit could be raised by ~2-4x on Ampere or newer
    GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);

    if (order == GGML_SORT_ORDER_ASC) {
        k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
    } else if (order == GGML_SORT_ORDER_DESC) {
        k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
    } else {
        GGML_ABORT("fatal error");
    }
}

void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const float * src0_d = (const float *)src0->data;
    float * dst_d = (float *)dst->data;
    cudaStream_t stream = ctx.stream();

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT( dst->type == GGML_TYPE_I32);
    GGML_ASSERT(ggml_is_contiguous(src0));

    const int64_t ncols = src0->ne[0];
    const int64_t nrows = ggml_nrows(src0);

    enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];

    argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
}