ggml-blas.cpp 13.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/**
 * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
 *
 * MIT License
 *
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#ifdef GGML_USE_BLAS

#include "ggml-blas.h"
#include "ggml-backend-impl.h"

#include <future>
#include <vector>

#if defined(GGML_USE_ACCELERATE)
#   include <Accelerate/Accelerate.h>
#elif defined(GGML_BLAS_USE_MKL)
#   include <mkl.h>
#elif defined(GGML_BLAS_USE_BLIS)
#   include <blis.h>
#elif defined(GGML_BLAS_USE_NVPL)
#   include <nvpl_blas.h>
#else
#   include <cblas.h>
#endif

struct ggml_backend_blas_context {
    int n_threads = GGML_DEFAULT_N_THREADS;
    std::unique_ptr<char[]> work_data;
    size_t work_size = 0;
#ifndef GGML_USE_OPENMP
    std::vector<std::future<void>> tasks;
#endif
};

// helper function to determine if it is better to use BLAS or not
// for large matrices, BLAS is faster
static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
    const struct ggml_tensor * src0 = dst->src[0];
    const struct ggml_tensor * src1 = dst->src[1];

    const int64_t ne10 = src1->ne[0];

    const int64_t ne0 = dst->ne[0];
    const int64_t ne1 = dst->ne[1];

    // TODO: find the optimal values for these
    if (ggml_is_contiguous(src0) &&
        ggml_is_contiguous(src1) &&
        src1->type == GGML_TYPE_F32 &&
        (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {

        /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
        return true;
    }

    return false;
}

static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
    const struct ggml_tensor * src0 = dst->src[0];
    const struct ggml_tensor * src1 = dst->src[1];

    GGML_TENSOR_BINARY_OP_LOCALS

    const enum ggml_type type = src0->type;

    GGML_ASSERT(ne0 == ne01);
    GGML_ASSERT(ne1 == ne11);
    GGML_ASSERT(ne2 == ne12);
    GGML_ASSERT(ne3 == ne13);

    // we don't support permuted src0 or src1
    GGML_ASSERT(nb00 == ggml_type_size(type));
    GGML_ASSERT(nb10 == ggml_type_size(src1->type));

    // dst cannot be transposed or permuted
    GGML_ASSERT(nb0 == sizeof(float));
    GGML_ASSERT(nb0 <= nb1);
    GGML_ASSERT(nb1 <= nb2);
    GGML_ASSERT(nb2 <= nb3);

    // broadcast factors
    const int64_t r2 = ne12/ne02;
    const int64_t r3 = ne13/ne03;

    const int64_t ne_plane      = ne01*ne00;
    const size_t  desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);

    if (ctx->work_size < desired_wsize) {
        ctx->work_data.reset(new char[desired_wsize]);
        ctx->work_size = desired_wsize;
    }
    void * wdata = ctx->work_data.get();

    // convert src0 to float
    if (type != GGML_TYPE_F32) {
        ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type);
        ggml_to_float_t const to_float = type_traits.to_float;

        for (int64_t i03 = 0; i03 < ne03; i03++) {
            for (int64_t i02 = 0; i02 < ne02; i02++) {
                const void  *       x      = (char *)  src0->data + i02*nb02          + i03*nb03;
                      float * const wplane = (float *) wdata      + i02*ne_plane      + i03*ne02*ne_plane;

                const int min_cols_per_thread = 4096;
                const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
                const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);

#ifdef GGML_USE_OPENMP
                #pragma omp parallel for num_threads(n_threads)
                for (int64_t i01 = 0; i01 < ne01; i01++) {
                    to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
                }
#else
                for (int i = 1; i < n_threads; i++) {
                    const int64_t start =       i*ne01/n_threads;
                    const int64_t end   = (i + 1)*ne01/n_threads;
                    if (start < end) {
                        ctx->tasks.push_back(std::async(std::launch::async, [=]() {
                            for (int64_t i01 = start; i01 < end; i01++) {
                                to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
                            }
                        }));
                    }
                }
                {
                    // reuse the current thread for the first task
                    const int64_t start = 0;
                    const int64_t end   = ne01/n_threads;
                    for (int64_t i01 = start; i01 < end; i01++) {
                        to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
                    }
                }
#endif
            }
        }

#ifndef GGML_USE_OPENMP
        // wait for all tasks to finish
        for (auto & task : ctx->tasks) {
            task.get();
        }
        ctx->tasks.clear();
#endif
    }

#if defined(OPENBLAS_VERSION)
    openblas_set_num_threads(ctx->n_threads);
#endif

#if defined(GGML_BLAS_USE_BLIS)
    bli_thread_set_num_threads(ctx->n_threads);
#endif

#if defined(GGML_BLAS_USE_NVPL)
    nvpl_blas_set_num_threads(ctx->n_threads);
#endif

    for (int64_t i13 = 0; i13 < ne13; i13++) {
        for (int64_t i12 = 0; i12 < ne12; i12++) {
            const int64_t i03 = i13/r3;
            const int64_t i02 = i12/r2;

            const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
            const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
                  float * d = (float *) ((char *)  dst->data + i12*nb2  + i13*nb3);

            if (type != GGML_TYPE_F32) {
                x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
            }

            cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
                        ne1, ne01, ne10,
                        1.0f,   y, ne10,
                                x, ne00,
                        0.0f,   d, ne01);
        }
    }
}

static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
    const struct ggml_tensor * src0 = dst->src[0];
    const struct ggml_tensor * src1 = dst->src[1];

    GGML_TENSOR_BINARY_OP_LOCALS

    GGML_ASSERT(ne0  == ne00);
    GGML_ASSERT(ne1  == ne10);
    GGML_ASSERT(ne2  == ne02);
    GGML_ASSERT(ne02 == ne12);
    GGML_ASSERT(ne3  == ne13);
    GGML_ASSERT(ne03 == ne13);

    // we don't support permuted src0 or src1
    GGML_ASSERT(nb00 == sizeof(float));

    // dst cannot be transposed or permuted
    GGML_ASSERT(nb0 == sizeof(float));
    // GGML_ASSERT(nb0 <= nb1);
    // GGML_ASSERT(nb1 <= nb2);
    // GGML_ASSERT(nb2 <= nb3);

    // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
    // src0: (k,n)
    // src1: (k,m)
    // dst:  (m,n)
    //
    // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
    // Also expressed as (major,minor)
    // a: (m,k): so src1 transposed
    // b: (k,n): so src0
    // c: (m,n)
    //
    // However, if ggml_is_transposed(src1) is true, then
    // src1->data already contains a transposed version, so sgemm mustn't
    // transpose it further.

    int n = src0->ne[0];
    int k = src0->ne[1];
    int m = src1->ne[0];

    CBLAS_TRANSPOSE transposeA;
    int lda;

    if (!ggml_is_transposed(src1)) {
        transposeA = CblasTrans;
        lda = m;
    } else {
        transposeA = CblasNoTrans;
        lda = k;
    }

    float * a = (float *) ((char *) src1->data);
    float * b = (float *) ((char *) src0->data);
    float * c = (float *) ((char *) dst->data);

    cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);

    GGML_UNUSED(ctx);
}

// backend interface

GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
    return "BLAS";

    GGML_UNUSED(backend);
}

GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
    ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
    delete ctx;
    delete backend;
}

GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
    return ggml_backend_cpu_buffer_type();

    GGML_UNUSED(backend);
}

GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
    ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;

    for (int i = 0; i < cgraph->n_nodes; i++) {
        struct ggml_tensor * node = cgraph->nodes[i];

        switch (node->op) {
            case GGML_OP_MUL_MAT:
                ggml_backend_blas_mul_mat(ctx, node);
                break;

            case GGML_OP_OUT_PROD:
                ggml_backend_blas_out_prod(ctx, node);
                break;

            case GGML_OP_NONE:
            case GGML_OP_RESHAPE:
            case GGML_OP_VIEW:
            case GGML_OP_PERMUTE:
            case GGML_OP_TRANSPOSE:
                break;

            default:
                GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
        }
    }

    return GGML_STATUS_SUCCESS;

    GGML_UNUSED(backend);
}

GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
    const struct ggml_tensor * src0 = op->src[0];
    const struct ggml_tensor * src1 = op->src[1];

    return (op->op == GGML_OP_MUL_MAT  && ggml_backend_blas_use_blas(op)) ||
           (op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 &&
                                          op->src[1]->type == GGML_TYPE_F32 &&
                                          ggml_is_matrix(src0) &&
                                          ggml_is_matrix(src1) &&
                                          ggml_is_contiguous(src0) &&
                                          (ggml_is_contiguous(src1) || ggml_is_transposed(src1)));

    GGML_UNUSED(backend);
}

GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
    return ggml_backend_buft_is_host(buft);

    GGML_UNUSED(backend);
}

static struct ggml_backend_i blas_backend_i = {
    /* .get_name                = */ ggml_backend_blas_name,
    /* .free                    = */ ggml_backend_blas_free,
    /* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
    /* .set_tensor_async        = */ NULL,
    /* .get_tensor_async        = */ NULL,
    /* .cpy_tensor_async        = */ NULL,
    /* .synchronize             = */ NULL,
    /* .graph_plan_create       = */ NULL,
    /* .graph_plan_free         = */ NULL,
    /* .graph_plan_update       = */ NULL,
    /* .graph_plan_compute      = */ NULL,
    /* .graph_compute           = */ ggml_backend_blas_graph_compute,
    /* .supports_op             = */ ggml_backend_blas_supports_op,
    /* .supports_buft           = */ ggml_backend_blas_supports_buft,
    /* .offload_op              = */ NULL,
    /* .event_new               = */ NULL,
    /* .event_free              = */ NULL,
    /* .event_record            = */ NULL,
    /* .event_wait              = */ NULL,
    /* .event_synchronize       = */ NULL,
};

static ggml_guid_t ggml_backend_blas_guid(void) {
    static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
    return &guid;
}

ggml_backend_t ggml_backend_blas_init(void) {
    ggml_backend_blas_context * ctx = new ggml_backend_blas_context;

    ggml_backend_t backend = new ggml_backend {
        /* .guid      = */ ggml_backend_blas_guid(),
        /* .interface = */ blas_backend_i,
        /* .context   = */ ctx,
    };

#if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
    if (openblas_get_parallel() != OPENBLAS_OPENMP) {
        fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
    }
#endif

#if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
    fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
#endif

    return backend;
}

GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
    return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
}

void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
    GGML_ASSERT(ggml_backend_is_blas(backend_blas));

    ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
    ctx->n_threads = n_threads;
}

#endif