model_sam.go 7.1 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
package deepseekocr

import (
	"math"
	"slices"

	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
)

type samModel struct {
	PatchEmbedding    *nn.Conv2D `gguf:"patch_embd"`
	PositionEmbedding ml.Tensor  `gguf:"position_embd"`

	Blocks []samBlock `gguf:"blk"`

	Neck *samNeck   `gguf:"neck"`
	Net2 *nn.Conv2D `gguf:"net_2"`
	Net3 *nn.Conv2D `gguf:"net_3"`

	Options samOptions
}

func (m *samModel) absolutePositionEmbedding(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
	source := m.PositionEmbedding.Dim(1)
	target := hiddenStates.Dim(2)
	if source != target {
		positionEmbed := m.PositionEmbedding.Permute(ctx, 2, 0, 1, 3)
		positionEmbed = positionEmbed.Interpolate(ctx, [4]int{target, target, hiddenStates.Dim(0), 1}, ml.SamplingModeBilinear)
		return positionEmbed.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
	}

	return m.PositionEmbedding
}

func (m *samModel) Forward(ctx ml.Context, t ml.Tensor) ml.Tensor {
	hiddenStates := m.PatchEmbedding.Forward(ctx, t, 16, 16, 0, 0, 1, 1)
	hiddenStates = hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

	if m.PositionEmbedding != nil {
		hiddenStates = hiddenStates.Add(ctx, m.absolutePositionEmbedding(ctx, hiddenStates))
	}

	for i, block := range m.Blocks {
		var windowSize int
		if !slices.Contains(m.Options.globalAttentionLayers, int32(i)) {
			windowSize = 14
		}

		hiddenStates = block.Forward(ctx, hiddenStates, windowSize, m.Options)
	}

	hiddenStates = hiddenStates.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
	hiddenStates = m.Neck.Forward(ctx, hiddenStates, m.Options)
	hiddenStates = m.Net2.Forward(ctx, hiddenStates, 2, 2, 1, 1, 1, 1)
	hiddenStates = m.Net3.Forward(ctx, hiddenStates, 2, 2, 1, 1, 1, 1)
	return hiddenStates
}

type samOptions struct {
	hiddenSize,
	numHeads int
	eps                   float32
	globalAttentionLayers []int32
}

func (o samOptions) headDim() int {
	return o.hiddenSize / o.numHeads
}

type samBlock struct {
	Norm1       *nn.LayerNorm `gguf:"norm1"`
	Attention   *samAttention `gguf:"attn"`
	Norm2       *nn.LayerNorm `gguf:"norm2"`
	FeedForward *samMLP       `gguf:"mlp"`
}

func (m *samBlock) Forward(ctx ml.Context, hiddenStates ml.Tensor, windowSize int, opts samOptions) ml.Tensor {
	c, w, h := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)

	residual := hiddenStates
	hiddenStates = m.Norm1.Forward(ctx, hiddenStates, opts.eps)

	var pw, ph int
	if windowSize > 0 {
		pw = (windowSize - hiddenStates.Dim(1)%windowSize) % windowSize
		ph = (windowSize - hiddenStates.Dim(2)%windowSize) % windowSize
		if pw > 0 || ph > 0 {
			hiddenStates = hiddenStates.Pad(ctx, 0, pw, ph, 0)
		}

		hiddenStates = hiddenStates.Reshape(ctx, c*windowSize, (w+pw)/windowSize, windowSize, -1)
		hiddenStates = hiddenStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx, c, windowSize, windowSize, -1)
	}

	hiddenStates = m.Attention.Forward(ctx, hiddenStates, opts)

	if windowSize > 0 {
		hiddenStates = hiddenStates.Reshape(ctx, c*windowSize, windowSize, (w+pw)/windowSize, -1)
		hiddenStates = hiddenStates.Permute(ctx, 0, 2, 1, 3)
		hiddenStates = hiddenStates.Contiguous(ctx, c, w+pw, h+ph, -1)
		hiddenStates = hiddenStates.Pad(ctx, 0, -pw, -ph, 0)
	}

	hiddenStates = hiddenStates.Add(ctx, residual)

	residual = hiddenStates
	hiddenStates = m.Norm2.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = m.FeedForward.Forward(ctx, hiddenStates, opts)
	return hiddenStates.Add(ctx, residual)
}

type samAttention struct {
	QKV    *nn.Linear `gguf:"qkv"`
	Output *nn.Linear `gguf:"proj"`

	RelativePosition *struct {
		Height ml.Tensor `gguf:"h"`
		Width  ml.Tensor `gguf:"w"`
	} `gguf:",pre:rel_pos_"`
}

func relativeCoordinates(ctx ml.Context, qn, kn int) ml.Tensor {
	s := make([]int32, qn*kn)
	for i := range qn {
		for j := range kn {
			q := i * max(kn/qn, 1)
			k := j * max(qn/kn, 1)
			s[i*kn+j] = int32(q - k + (kn-1)*max(qn/kn, 1))
		}
	}
	return ctx.Input().FromInts(s, qn*kn)
}

func relativePositions(ctx ml.Context, positions ml.Tensor, qn, kn int) ml.Tensor {
	maxRelativeDistance := 2*max(qn, kn) - 1
	if positions.Dim(1) != maxRelativeDistance {
		// linear interpolation kernel not available so approx. with bilinear interpolation
		positions = positions.Interpolate(ctx, [4]int{positions.Dim(0), maxRelativeDistance, 1, 1}, ml.SamplingModeBilinear)
	}

	rc := relativeCoordinates(ctx, qn, kn)
	return positions.Rows(ctx, rc).Reshape(ctx, positions.Dim(0), kn, qn)
}

func (m *samAttention) decomposedRelativePositions(ctx ml.Context, query ml.Tensor, qn, kn []int) (ml.Tensor, ml.Tensor) {
	qh, qw := qn[0], qn[1]
	kh, kw := kn[0], kn[1]

	rh := relativePositions(ctx, m.RelativePosition.Height, qh, kh)
	rw := relativePositions(ctx, m.RelativePosition.Width, qw, kw)

	query = query.Contiguous(ctx, query.Dim(0), qw, qh, -1)
	rh = rh.Mulmat(ctx, query).Reshape(ctx, 1, kh, qh*qw, -1)
	rw = rw.Mulmat(ctx, query.Permute(ctx, 0, 2, 1, 3)).Permute(ctx, 0, 2, 1, 3).Contiguous(ctx, kw, 1, qh*qw, -1)
	return rh, rw
}

func (m *samAttention) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts samOptions) ml.Tensor {
	w, h, b := hiddenStates.Dim(1), hiddenStates.Dim(2), hiddenStates.Dim(3)

	qkv := m.QKV.Forward(ctx, hiddenStates)
	qkv = qkv.Reshape(ctx, opts.headDim(), -1, w*h, b)
	chunks := qkv.Chunk(ctx, 1, opts.numHeads)
	query, key, value := chunks[0], chunks[1], chunks[2]

	ctx.Forward(query, key, value)

	query = query.Permute(ctx, 0, 2, 1, 3)
	rh, rw := m.decomposedRelativePositions(ctx, query, []int{h, w}, []int{h, w})
	mask := rh.Repeat(ctx, 0, rw.Dim(0)).Add(ctx, rw)
	mask = mask.Reshape(ctx, h*w, -1, opts.numHeads, b)

	key = key.Permute(ctx, 0, 2, 1, 3)
	scores := key.MulmatFullPrec(ctx, query)
	scores = scores.Scale(ctx, 1/math.Sqrt(float64(opts.headDim())))

	scores = scores.Add(ctx, mask)
	scores = scores.Softmax(ctx)

	value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
	attention := value.Mulmat(ctx, scores)
	attention = attention.Permute(ctx, 0, 2, 1, 3)
	attention = attention.Contiguous(ctx, -1, w, h, b)
	return m.Output.Forward(ctx, attention)
}

type samMLP struct {
	Lin1 *nn.Linear `gguf:"lin1"`
	Lin2 *nn.Linear `gguf:"lin2"`
}

func (m *samMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts samOptions) ml.Tensor {
	return m.Lin2.Forward(ctx, m.Lin1.Forward(ctx, hiddenStates).GELU(ctx))
}

type LayerNorm2D struct {
	Weight ml.Tensor `gguf:"weight"`
	Bias   ml.Tensor `gguf:"bias"`
}

func (ln *LayerNorm2D) Forward(ctx ml.Context, x ml.Tensor, eps float32) ml.Tensor {
	x = x.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
	u := x.Mean(ctx)
	d := x.Sub(ctx, u)
	s := d.Sqr(ctx).Mean(ctx)
	x = d.Div(ctx, s.Add(ctx, ctx.Input().FromFloats([]float32{eps}, 1)).Sqrt(ctx))
	x = x.Mul(ctx, ln.Weight).Add(ctx, ln.Bias)
	return x.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
}

type samNeck struct {
	C1  *nn.Conv2D   `gguf:"0"`
	LN1 *LayerNorm2D `gguf:"1"`
	C2  *nn.Conv2D   `gguf:"2"`
	LN2 *LayerNorm2D `gguf:"3"`
}

func (m *samNeck) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts samOptions) ml.Tensor {
	hiddenStates = m.C1.Forward(ctx, hiddenStates, 1, 1, 0, 0, 1, 1)
	hiddenStates = m.LN1.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = m.C2.Forward(ctx, hiddenStates, 1, 1, 1, 1, 1, 1)
	hiddenStates = m.LN2.Forward(ctx, hiddenStates, opts.eps)
	return hiddenStates
}