embed.go 5.11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package bert

import (
	"cmp"
	"math"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/ml/nn/pooling"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Model struct {
	model.Base
	model.TextProcessor

	TokenEmbedding     *nn.Embedding `gguf:"token_embd"`
	TypeEmbedding      *nn.Embedding `gguf:"token_types"`
	PositionEmbedding  *nn.Embedding `gguf:"position_embd"`
	TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"`

	Layers []EncoderLayer `gguf:"blk"`

	Options
}

// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
	hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
32
	hiddenStates = hiddenStates.Add(ctx, m.TypeEmbedding.Weight.Slice(ctx, 1, 0, 1, 1))
Michael Yang's avatar
Michael Yang committed
33
	hiddenStates = hiddenStates.Add(ctx, m.PositionEmbedding.Forward(ctx, ctx.Input().FromInts(batch.Positions, len(batch.Positions))))
34
35
36
37
38
39
	hiddenStates = m.TokenEmbeddingNorm.Forward(ctx, hiddenStates, m.eps)

	for _, layer := range m.Layers {
		hiddenStates = layer.Forward(ctx, hiddenStates, &m.Options)
	}

Michael Yang's avatar
Michael Yang committed
40
	hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
	if m.normalize {
		hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
	}

	return hiddenStates, nil
}

type EncoderLayer struct {
	*Attention
	AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"`

	*MLP
	MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"`
}

func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
	// Attention
	residual := hiddenStates
	hiddenStates = e.Attention.Forward(ctx, hiddenStates, opts)
	hiddenStates = hiddenStates.Add(ctx, residual)
	hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)

	// MLP
	residual = hiddenStates
	hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
	hiddenStates = hiddenStates.Add(ctx, residual)
	hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps)

	return hiddenStates
}

type Attention struct {
	Query     *nn.Linear    `gguf:"attn_q"`
	QueryNorm *nn.LayerNorm `gguf:"attn_q_norm"`

	Key     *nn.Linear    `gguf:"attn_k"`
	KeyNorm *nn.LayerNorm `gguf:"attn_k_norm"`

	Value *nn.Linear `gguf:"attn_v"`

	Output *nn.Linear `gguf:"attn_output"`
}

func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
	batchSize := hiddenStates.Dim(1)

	query := a.Query.Forward(ctx, hiddenStates)
	if a.QueryNorm != nil {
		query = a.QueryNorm.Forward(ctx, query, opts.eps)
	}
	query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)

	key := a.Key.Forward(ctx, hiddenStates)
	if a.KeyNorm != nil {
		key = a.KeyNorm.Forward(ctx, key, opts.eps)
	}
	key = key.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)

	value := a.Value.Forward(ctx, hiddenStates)
	value = value.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)

	attention := nn.Attention(ctx, query, key, value, 1/math.Sqrt(float64(opts.headDim())), nil)
	attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
	return a.Output.Forward(ctx, attention)
}

type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
}

func (m *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
	return m.Down.Forward(ctx, m.Up.Forward(ctx, hiddenStates).GELU(ctx))
}

type Options struct {
	hiddenSize,
	numHeads,
	numKVHeads,
	keyLength,
	valueLength int
	poolingType pooling.Type
	eps         float32
	normalize   bool
}

func (o Options) headDim() int {
	return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}

func New(c fs.Config) (model.Model, error) {
	var processor model.TextProcessor
	switch c.String("tokenizer.ggml.model", "bert") {
	case "bert":
		processor = model.NewWordPiece(
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Scores: c.Floats("tokenizer.ggml.scores"),
				Types:  c.Ints("tokenizer.ggml.token_type"),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
				BOS: []int32{
					int32(cmp.Or(
						c.Uint("tokenizer.ggml.cls_token_id"),
						c.Uint("tokenizer.ggml.bos_token_id"),
					)),
				},
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
				EOS: []int32{
					int32(cmp.Or(
						c.Uint("tokenizer.ggml.separator_token_id"),
						//nolint:misspell
						// NOTE: "seperator_token_id" is a typo in model metadata but we need to
						// support it for compatibility.
						c.Uint("tokenizer.ggml.seperator_token_id"),
						c.Uint("tokenizer.ggml.eos_token_id"),
					)),
				},
			},
159
			true,
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
		)
	default:
		return nil, model.ErrUnsupportedTokenizer
	}

	return &Model{
		TextProcessor: processor,
		Layers:        make([]EncoderLayer, c.Uint("block_count")),
		Options: Options{
			hiddenSize:  int(c.Uint("embedding_length")),
			numHeads:    int(c.Uint("attention.head_count")),
			numKVHeads:  int(c.Uint("attention.head_count_kv")),
			eps:         c.Float("attention.layer_norm_epsilon"),
			poolingType: pooling.Type(c.Uint("pooling_type")),
			normalize:   c.Bool("normalize_embeddings", true),
		},
	}, nil
}

func init() {
	model.Register("bert", New)
	model.Register("bert_embed", New)
}