nemotron-h.cpp 5.21 KB
Newer Older
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#include "models.h"



llm_build_nemotron_h::llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params) :
    llm_graph_context_mamba(params) {
    const int64_t n_embd_head = hparams.n_embd_head_v;
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

    ggml_tensor * cur;
    ggml_tensor * inpL;

    inpL = build_inp_embd(model.tok_embd);
    ggml_build_forward_expand(gf, inpL);

    auto * inp = build_inp_mem_hybrid();

    ggml_tensor * inp_out_ids = build_inp_out_ids();

    for (int il = 0; il < n_layer; ++il) {
        struct ggml_tensor * inpSA = inpL;

        // norm
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
        cb(cur, "attn_norm", il);

        if (hparams.is_recurrent(il)) {
            // ssm layer //
            cur = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
        } else if (hparams.n_ff(il) == 0) {
            // attention layer //
            cur = build_attention_layer(cur, inp->get_attn(), model, n_embd_head, il);
        } else {
            cur = build_ffn_layer(cur, model, il);
        }

        if (il == n_layer - 1 && inp_out_ids) {
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
        }

        // add residual
        cur = ggml_add(ctx0, cur, inpSA);
        cb(cur, "nemotron_h_block_out", il);

        // input for next layer
        inpL = cur;
    }

    cur = inpL;

    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);

    cb(cur, "result_norm", -1);
    res->t_embd = cur;

    // lm_head
    cur = build_lora_mm(model.output, cur);
    cb(cur, "result_output", -1);
    res->t_logits = cur;

    ggml_build_forward_expand(gf, cur);
}

ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor *             cur,
                                                          llm_graph_input_attn_kv * inp_attn,
                                                          const llama_model &       model,
                                                          const int64_t             n_embd_head,
                                                          const int                 il) {
    // compute Q and K and (optionally) RoPE them
    ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
    cb(Qcur, "Qcur", il);
    if (model.layers[il].bq) {
        Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
        cb(Qcur, "Qcur", il);
    }

    ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
    cb(Kcur, "Kcur", il);
    if (model.layers[il].bk) {
        Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
        cb(Kcur, "Kcur", il);
    }

    ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
    cb(Vcur, "Vcur", il);
    if (model.layers[il].bv) {
        Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
        cb(Vcur, "Vcur", il);
    }

    Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, hparams.n_head(il), n_tokens);
    Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, hparams.n_head_kv(il), n_tokens);
    Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, hparams.n_head_kv(il), n_tokens);

    cb(Qcur, "Qcur", il);
    cb(Kcur, "Kcur", il);
    cb(Vcur, "Vcur", il);

    const float kq_scale =
        hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
    cur = build_attn(inp_attn,
            model.layers[il].wo, model.layers[il].bo,
            Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
    cb(cur, "attn_out", il);
    return cur;
}

ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il) {
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    if (model.layers[il].ffn_gate_inp == nullptr) {
        cur = build_ffn(cur,
                model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
                NULL,                      NULL,                        NULL,
                model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
                NULL,
                LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
        cb(cur, "ffn_out", il);
    } else {
        ggml_tensor * ffn_inp = cur;
        ggml_tensor * moe_out =
            build_moe_ffn(ffn_inp,
                    model.layers[il].ffn_gate_inp,
                    model.layers[il].ffn_up_exps,
                    nullptr, // no gate
                    model.layers[il].ffn_down_exps,
                    model.layers[il].ffn_exp_probs_b,
                    n_expert, n_expert_used,
                    LLM_FFN_RELU_SQR, hparams.expert_weights_norm,
                    true, hparams.expert_weights_scale,
                    LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
                    il);
        cb(moe_out, "ffn_moe_out", il);

        ggml_tensor * ffn_shexp = build_ffn(ffn_inp,
                    model.layers[il].ffn_up_shexp,  NULL, NULL,
                    NULL /* no gate */           ,  NULL, NULL,
                    model.layers[il].ffn_down_shexp, NULL, NULL,
                    NULL,
                    LLM_FFN_RELU_SQR, LLM_FFN_PAR, il);
        cb(ffn_shexp, "ffn_shexp", il);

        cur = ggml_add(ctx0, moe_out, ffn_shexp);
        cb(cur, "ffn_out", il);
    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
145
146
147
148
149
150

    cur = build_cvec(cur, il);
    cb(cur, "l_out", il);

    return cur;
}