model.go 5.34 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
package llama

import (
4
	"fmt"
Michael Yang's avatar
Michael Yang committed
5
	"math"
6
	"strings"
Michael Yang's avatar
Michael Yang committed
7

Jesse Gross's avatar
Jesse Gross committed
8
	"github.com/ollama/ollama/kvcache"
Michael Yang's avatar
Michael Yang committed
9
10
11
12
13
14
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
)

type Options struct {
15
	hiddenSize, numHeads, numKVHeads int
Michael Yang's avatar
Michael Yang committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
	eps, ropeBase, ropeScale         float32
	ropeDim                          uint32
}

type Model struct {
	model.Base
	model.BytePairEncoding

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	*Options
}

func New(c ml.Config) (model.Model, error) {
33
34
35
36
	if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
		return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
	}

Jesse Gross's avatar
Jesse Gross committed
37
	m := Model{
Michael Yang's avatar
Michael Yang committed
38
39
40
41
42
43
		BytePairEncoding: model.NewBytePairEncoding(
			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Uints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
44
				BOS:    int32(c.Uint("tokenizer.ggml.bos_token_id")),
45
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
46
				EOS:    int32(c.Uint("tokenizer.ggml.eos_token_id")),
47
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
Michael Yang's avatar
Michael Yang committed
48
49
50
51
			},
		),
		Layers: make([]Layer, c.Uint("block_count")),
		Options: &Options{
52
53
54
			hiddenSize: int(c.Uint("embedding_length")),
			numHeads:   int(c.Uint("attention.head_count")),
			numKVHeads: int(c.Uint("attention.head_count_kv")),
Michael Yang's avatar
Michael Yang committed
55
56
57
58
59
			eps:        c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:   c.Float("rope.freq_base"),
			ropeScale:  c.Float("rope.freq_scale", 1),
			ropeDim:    c.Uint("rope.dimension_count"),
		},
Jesse Gross's avatar
Jesse Gross committed
60
61
62
63
64
	}

	m.Cache = kvcache.NewCausalCache(m.Shift)

	return &m, nil
Michael Yang's avatar
Michael Yang committed
65
66
67
}

type SelfAttention struct {
68
69
70
71
72
	Query       *nn.Linear `gguf:"attn_q"`
	Key         *nn.Linear `gguf:"attn_k"`
	Value       *nn.Linear `gguf:"attn_v"`
	Output      *nn.Linear `gguf:"attn_output"`
	RopeFactors ml.Tensor  `gguf:"rope_freqs.weight"`
Michael Yang's avatar
Michael Yang committed
73
74
}

Jesse Gross's avatar
Jesse Gross committed
75
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
76
77
78
79
80
	batchSize := hiddenState.Dim(1)
	headDim := opts.hiddenSize / opts.numHeads

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
81
	q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
Michael Yang's avatar
Michael Yang committed
82
83
84

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
85
	k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
Michael Yang's avatar
Michael Yang committed
86
87
88
89

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

90
	scaleFactor := 1.0 / math.Sqrt(float64(headDim))
91
	kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
Michael Yang's avatar
Michael Yang committed
92
93
94
95
96
	kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)

	return sa.Output.Forward(ctx, kqv)
}

Jesse Gross's avatar
Jesse Gross committed
97
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
98
	return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, m.ropeDim, m.ropeBase, m.ropeScale), nil
Jesse Gross's avatar
Jesse Gross committed
99
100
}

Michael Yang's avatar
Michael Yang committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention *SelfAttention
	MLPNorm       *nn.RMSNorm `gguf:"ffn_norm"`
	MLP           *MLP
}

119
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
120
121
122
123
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
124
125
126
127
128
129
130
131

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

Michael Yang's avatar
Michael Yang committed
132
133
134
135
136
137
138
139
140
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	return hiddenState.Add(ctx, residual)
}

func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
141
	inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
Michael Yang's avatar
Michael Yang committed
142
143
144
145
	if err != nil {
		return nil, err
	}

146
	positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
Michael Yang's avatar
Michael Yang committed
147
148
149
150
	if err != nil {
		return nil, err
	}

151
	outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
152
153
154
155
	if err != nil {
		return nil, err
	}

Michael Yang's avatar
Michael Yang committed
156
157
158
	hiddenState := m.TokenEmbedding.Forward(ctx, inputs)

	for i, layer := range m.Layers {
Jesse Gross's avatar
Jesse Gross committed
159
		m.Cache.SetLayer(i)
Michael Yang's avatar
Michael Yang committed
160

161
162
163
164
		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}
Michael Yang's avatar
Michael Yang committed
165

166
		hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
Michael Yang's avatar
Michael Yang committed
167
168
	}

169
170
	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	return m.Output.Forward(ctx, hiddenState), nil
Michael Yang's avatar
Michael Yang committed
171
172
173
174
175
}

func init() {
	model.Register("llama", New)
}