model.go 5.78 KB
Newer Older
Michael Yang's avatar
llama4  
Michael Yang committed
1
2
3
4
5
package llama4

import (
	"bytes"
	"image"
Michael Yang's avatar
Michael Yang committed
6
7
	"slices"
	"sync"
Michael Yang's avatar
llama4  
Michael Yang committed
8
9
10
11
12
13
14
15
16
17
18
19

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Model struct {
	model.Base
	model.BytePairEncoding
Michael Yang's avatar
Michael Yang committed
20
	ImageProcessor
Michael Yang's avatar
llama4  
Michael Yang committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	*VisionModel `gguf:"v,vision"`
	*Projector   `gguf:"mm"`
	*TextModel
}

type Projector struct {
	Linear1 *nn.Linear `gguf:"linear_1"`
}

func (p *Projector) Forward(ctx ml.Context, visionOutputs ml.Tensor) ml.Tensor {
	return p.Linear1.Forward(ctx, visionOutputs)
}

func New(c fs.Config) (model.Model, error) {
	m := Model{
		BytePairEncoding: model.NewBytePairEncoding(
Michael Yang's avatar
Michael Yang committed
38
39
			c.String("tokenizer.ggml.pretokenizer",
				`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
Michael Yang's avatar
llama4  
Michael Yang committed
40
41
42
43
44
45
46
47
48
49
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Uints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
				BOS:    int32(c.Uint("tokenizer.ggml.bos_token_id")),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
				EOS:    int32(c.Uint("tokenizer.ggml.eos_token_id")),
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
			},
		),
Michael Yang's avatar
Michael Yang committed
50
51
52
		ImageProcessor: newImageProcessor(c),
		VisionModel:    newVisionModel(c),
		TextModel:      newTextModel(c),
Michael Yang's avatar
llama4  
Michael Yang committed
53
54
55
	}

	m.Cache = kvcache.NewWrapperCache(
Michael Yang's avatar
Michael Yang committed
56
		kvcache.NewChunkedAttentionCache(int32(c.Uint("attention.chunk_size", 8192)), m.Shift),
Michael Yang's avatar
llama4  
Michael Yang committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
		kvcache.NewCausalCache(m.Shift),
	)

	return &m, nil
}

func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
	if len(m.VisionModel.Layers) < 1 {
		return nil, model.ErrNoVisionModel
	}

	img, _, err := image.Decode(bytes.NewReader(multimodalData))
	if err != nil {
		return nil, err
	}

Michael Yang's avatar
Michael Yang committed
73
	pixelsLocal, pixelsGlobal, size, err := m.ProcessImage(img)
Michael Yang's avatar
llama4  
Michael Yang committed
74
75
76
77
	if err != nil {
		return nil, err
	}

Michael Yang's avatar
Michael Yang committed
78
	tilesLocal, err := ctx.Input().FromFloatSlice(pixelsLocal, size.X, size.Y, m.numChannels)
Michael Yang's avatar
llama4  
Michael Yang committed
79
80
81
82
	if err != nil {
		return nil, err
	}

Michael Yang's avatar
Michael Yang committed
83
	ratioW, ratioH := size.X/m.imageSize, size.Y/m.imageSize
Michael Yang's avatar
Michael Yang committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

	tilesLocal = tilesLocal.Reshape(ctx, size.X/ratioW, ratioW, size.Y, m.numChannels).Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	tilesLocal = tilesLocal.Reshape(ctx, size.X/ratioW*size.Y/ratioH, ratioH, ratioW, m.numChannels).Permute(ctx, 0, 3, 2, 1).Contiguous(ctx)
	tilesLocal = tilesLocal.Reshape(ctx, size.X/ratioW, size.Y/ratioH, m.numChannels, ratioH*ratioW)

	pixelValues := tilesLocal

	if len(pixelsGlobal) > 0 {
		tilesGlobal, err := ctx.Input().FromFloatSlice(pixelsGlobal, m.imageSize, m.imageSize, m.numChannels)
		if err != nil {
			return nil, err
		}

		pixelValues = pixelValues.Concat(ctx, tilesGlobal, 3)
	}

Michael Yang's avatar
llama4  
Michael Yang committed
100
101
	visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
	visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0), visionOutputs.Dim(1)*visionOutputs.Dim(2)*visionOutputs.Dim(3))
Michael Yang's avatar
Michael Yang committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
	projectedOutputs := m.Projector.Forward(ctx, visionOutputs)
	return &chunks{Model: m, Tensor: projectedOutputs, aspectRatio: image.Point{ratioW, ratioH}}, nil
}

type chunks struct {
	*Model
	ml.Tensor
	aspectRatio image.Point

	dataOnce sync.Once
	data     []float32
}

type chunk struct {
	*chunks
	s, n int
}

func (r *chunk) floats() []float32 {
	r.dataOnce.Do(func() {
		temp := r.Backend().NewContext()
		defer temp.Close()
		temp.Forward(r.Tensor).Compute(r.Tensor)
		r.data = r.Floats()
	})

	return r.data[r.s*r.Dim(0) : (r.s+r.n)*r.Dim(0)]
Michael Yang's avatar
llama4  
Michael Yang committed
129
130
}

Michael Yang's avatar
Michael Yang committed
131
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
Michael Yang's avatar
Michael Yang committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
	var result []input.Input
	for _, inp := range inputs {
		if inp.Multimodal == nil {
			result = append(result, inp)
			continue
		}

		t := inp.Multimodal.(*chunks)
		var imageInputs []input.Input
		imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_start|>

		var offset int
		patchesPerChunk := t.Dim(1)
		if t.aspectRatio.Y*t.aspectRatio.X > 1 {
			patchesPerChunk = t.Dim(1) / (t.aspectRatio.X*t.aspectRatio.Y + 1)

			for range t.aspectRatio.Y {
				for x := range t.aspectRatio.X {
					imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: &chunk{t, offset, patchesPerChunk}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
					imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
					if x < t.aspectRatio.X-1 {
						imageInputs = append(imageInputs, input.Input{Token: 200084}) // <|tile_x_separator|>
					}
					offset += patchesPerChunk
				}

				imageInputs = append(imageInputs, input.Input{Token: 200085}) // <|tile_y_separator|>
			}
		}

		imageInputs = append(imageInputs, input.Input{Token: 200090})                                                                                                                 // <|image|>
		imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: &chunk{t, offset, patchesPerChunk}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
		imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
		imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_end|>

		result = append(result, imageInputs...)
	}

	return result, nil
Michael Yang's avatar
Michael Yang committed
171
172
}

Michael Yang's avatar
llama4  
Michael Yang committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
	positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
	if err != nil {
		return nil, err
	}

	outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
	if err != nil {
		return nil, err
	}

	return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}

func init() {
	model.Register("llama4", New)
}