llama-sampling.cpp 77.9 KB
Newer Older
1
/**
2
 * llama.cpp - commit ba1cb19cdd0d92e012e0f6e009e0620f854b6afd - do not edit this file
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
 *
 * MIT License
 *
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "llama-sampling.h"

29
30
31
#include "llama-vocab.h"
#include "llama-grammar.h"

32
#include <algorithm>
33
34
35
36
37
#include <cassert>
#include <cfloat>
#include <chrono>
#include <cmath>
#include <cstdlib>
38
39
40
#include <cstring>
#include <ctime>
#include <numeric>
41
#include <random>
42
43
#include <unordered_map>

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) {
    // iterator for the probabilities
#ifdef __GNUC__
    #pragma GCC diagnostic push
    #pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#endif

    struct probs_iterator {
        typedef std::input_iterator_tag iterator_category;
        typedef float value_type;
        typedef float * pointer;
        typedef float & reference;
        typedef ptrdiff_t difference_type;

        const llama_token_data * data;

        bool operator==(const probs_iterator & other) const { return data == other.data; }
        bool operator!=(const probs_iterator & other) const { return data != other.data; }
        const float & operator*() const { return data->p; }
        probs_iterator & operator++() { ++data; return *this; }
        probs_iterator operator++(int) { probs_iterator tmp = *this; ++data; return tmp; }
    };

#ifdef __GNUC__
    #pragma GCC diagnostic pop
#endif

    std::discrete_distribution<int> dist(probs_iterator{cur_p->data}, probs_iterator{cur_p->data + cur_p->size});

    return dist(rng);
}

/*
77
78
79
80
81
82
83
84
85
86
87
88
89
static void llama_log_softmax(float * array, size_t size) {
    float max_l = *std::max_element(array, array + size);
    float sum = 0.f;
    for (size_t i = 0; i < size; ++i) {
        float p = expf(array[i] - max_l);
        sum += p;
        array[i] = p;
    }

    for (size_t i = 0; i < size; ++i) {
        array[i] = logf(array[i] / sum);
    }
}
90
*/
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) {
    if (temp <= 0.0f) {
        // find the token with the highest logit and set the rest to -inf
        size_t max_i = 0;
        float  max_l = cur_p->data[0].logit;

        for (size_t i = 1; i < cur_p->size; ++i) {
            if (cur_p->data[i    ].logit > max_l) {
                cur_p->data[max_i].logit = -INFINITY;
                max_i = i;
                max_l = cur_p->data[i].logit;
            } else {
                cur_p->data[i].logit = -INFINITY;
            }
        }

        return;
    }

    for (size_t i = 0; i < cur_p->size; ++i) {
        cur_p->data[i].logit /= temp;
    }
}

116
117
static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) {
    GGML_ASSERT(cur_p->size > 0);
118
119

    // Sort the logits in descending order
120
121
    if (!cur_p->sorted) {
        std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
122
123
            return a.logit > b.logit;
        });
124
        cur_p->sorted = true;
125
126
    }

127
    float max_l = cur_p->data[0].logit;
128
    float cum_sum = 0.0f;
129
130
131
132

    for (size_t i = 0; i < cur_p->size; ++i) {
        float p = expf(cur_p->data[i].logit - max_l);
        cur_p->data[i].p = p;
133
134
135
        cum_sum += p;
    }

136
137
    for (size_t i = 0; i < cur_p->size; ++i) {
        cur_p->data[i].p /= cum_sum;
138
139
140
    }
}

141
static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) {
142
    // TODO: move bucket sort to separate function so that top_p/typical/softmax first is equally fast
143
    // if (k >= (int32_t)cur_p->size) {
144
145
146
147
    //     return;
    // }

    if (k <= 0) {
148
        k = cur_p->size;
149
150
    }

151
    k = std::min(k, (int) cur_p->size);
152
153

    // Sort scores in descending order
154
    if (!cur_p->sorted) {
155
156
157
158
        auto comp = [](const llama_token_data & a, const llama_token_data & b) {
            return a.logit > b.logit;
        };
        if (k <= 128) {
159
            std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp);
160
161
162
163
164
165
166
        } else {
            constexpr int   nbuckets     = 128;
            constexpr float bucket_low   = -10.0f;
            constexpr float bucket_high  =  10.0f;
            constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
            constexpr float bucket_inter = -bucket_low * bucket_scale;

167
            std::vector<int> bucket_idx(cur_p->size);
168
169
            std::vector<int> histo(nbuckets, 0);

170
171
            for (int i = 0; i < (int)cur_p->size; ++i) {
                const float val = cur_p->data[i].logit;
172
173
174
175
176
177
178
179
180
                int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
                ib = std::max(0, std::min(nbuckets-1, ib));
                bucket_idx[i] = ib;
                ++histo[ib];
            }
            int nhave = 0;
            int ib = nbuckets - 1;
            for ( ; ib >= 0; --ib) {
                nhave += histo[ib];
181
182
183
                if (nhave >= k) {
                    break;
                }
184
185
            }
            std::vector<llama_token_data> tmp_tokens(nhave);
186
            auto * ptr = tmp_tokens.data();
187
188
189
190
191
192
            std::vector<llama_token_data*> bucket_ptrs;
            bucket_ptrs.reserve(nbuckets - ib);
            for (int j = nbuckets - 1; j >= ib; --j) {
                bucket_ptrs.push_back(ptr);
                ptr += histo[j];
            }
193
            for (int i = 0; i < (int)cur_p->size; ++i) {
194
195
                int j = bucket_idx[i];
                if (j >= ib) {
196
                    *bucket_ptrs[nbuckets-1-j]++ = cur_p->data[i];
197
198
199
200
201
202
203
204
205
206
207
208
                }
            }

            ptr = tmp_tokens.data();
            int ndone = 0;
            for (int j = nbuckets-1; j > ib; --j) {
                std::sort(ptr, ptr + histo[j], comp);
                ptr += histo[j];
                ndone += histo[j];
            }
            std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);

209
            std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data));
210
211

        }
212
        cur_p->sorted = true;
213
    }
214
215
    cur_p->size = k;
}
216

217
218
219
220
221
222
223
224
225
static uint32_t get_rng_seed(uint32_t seed) {
    if (seed == LLAMA_DEFAULT_SEED) {
        // use system clock if std::random_device is not a true RNG
        static bool is_rd_prng = std::random_device().entropy() == 0;
        if (is_rd_prng) {
            return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count();
        }
        std::random_device rd;
        return rd();
226
    }
227
    return seed;
228
229
}

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// llama_sampler API

const char * llama_sampler_name(const struct llama_sampler * smpl) {
    if (!smpl->iface) {
        return "(null)";
    }

    return smpl->iface->name(smpl);
}

void llama_sampler_accept(struct llama_sampler * smpl, llama_token token) {
    if (smpl->iface->accept) {
        smpl->iface->accept(smpl, token);
    }
}

void llama_sampler_apply(struct llama_sampler * smpl, struct llama_token_data_array * cur_p) {
    GGML_ASSERT(smpl->iface->apply);
    smpl->iface->apply(smpl, cur_p);
}

void llama_sampler_reset(struct llama_sampler * smpl) {
    if (smpl->iface->reset) {
        smpl->iface->reset(smpl);
    }
}

struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) {
    if (smpl->iface->clone) {
        return smpl->iface->clone(smpl);
    }

    if (smpl->ctx == nullptr) {
        return new llama_sampler {
            /* .iface = */ smpl->iface,
            /* .ctx   = */ nullptr,
        };
    }

    GGML_ABORT("the sampler does not support cloning");
}

void llama_sampler_free(struct llama_sampler * smpl) {
    if (smpl == nullptr) {
274
275
276
        return;
    }

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    if (smpl->iface->free) {
        smpl->iface->free(smpl);
    }

    delete smpl;
}

llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
    const auto * logits = llama_get_logits_ith(ctx, idx);

    const int n_vocab = llama_n_vocab(llama_get_model(ctx));

    // TODO: do not allocate each time
    std::vector<llama_token_data> cur;
    cur.reserve(n_vocab);
    for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
        cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
    }

    llama_token_data_array cur_p = {
        /* .data       = */ cur.data(),
        /* .size       = */ cur.size(),
        /* .selected   = */ -1,
        /* .sorted     = */ false,
    };

    llama_sampler_apply(smpl, &cur_p);

    GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size);

    auto token = cur_p.data[cur_p.selected].id;

    llama_sampler_accept(smpl, token);

    return token;
}

// sampler chain

static const char * llama_sampler_chain_name(const struct llama_sampler * /*smpl*/) {
    return "chain";
}

static void llama_sampler_chain_accept(struct llama_sampler * smpl, llama_token token) {
    auto * chain = (llama_sampler_chain *) smpl->ctx;

    time_meas tm(chain->t_sample_us, chain->params.no_perf);

    for (auto * smpl : chain->samplers) {
        llama_sampler_accept(smpl, token);
    }

    chain->n_sample++;
}

static void llama_sampler_chain_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * chain = (llama_sampler_chain *) smpl->ctx;

    time_meas tm(chain->t_sample_us, chain->params.no_perf);

    for (auto * smpl : chain->samplers) {
        llama_sampler_apply(smpl, cur_p);
    }
}

static void llama_sampler_chain_reset(struct llama_sampler * smpl) {
    auto * chain = (llama_sampler_chain *) smpl->ctx;

    for (auto * smpl : chain->samplers) {
        llama_sampler_reset(smpl);
    }

    chain->t_sample_us = 0;
    chain->n_sample    = 0;
}

static struct llama_sampler * llama_sampler_chain_clone(const struct llama_sampler * smpl) {
    const auto * chain_src = (const llama_sampler_chain *) smpl->ctx;

    auto * result = llama_sampler_chain_init(chain_src->params);

    for (auto * smpl : chain_src->samplers) {
        llama_sampler_chain_add(result, llama_sampler_clone(smpl));
    }

    return result;
}

static void llama_sampler_chain_free(struct llama_sampler * smpl) {
    auto * chain = (llama_sampler_chain *) smpl->ctx;

    for (auto * smpl : chain->samplers) {
        llama_sampler_free(smpl);
    }

    delete chain;
}

static struct llama_sampler_i llama_sampler_chain_i = {
    /* .name   = */ llama_sampler_chain_name,
    /* .accept = */ llama_sampler_chain_accept,
    /* .apply  = */ llama_sampler_chain_apply,
    /* .reset  = */ llama_sampler_chain_reset,
    /* .clone  = */ llama_sampler_chain_clone,
    /* .free   = */ llama_sampler_chain_free,
};

struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) {
    return new llama_sampler {
        /* .iface = */ &llama_sampler_chain_i,
        /* .ctx   = */ new llama_sampler_chain {
            /* .params      = */ params,
            /* .samplers    = */ {},
            /* .t_sample_us = */ 0,
            /* .n_sample    = */ 0,
        },
    };
}

void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) {
    auto * p = (llama_sampler_chain *) chain->ctx;
    p->samplers.push_back(smpl);
}

struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) {
    const auto * p = (const llama_sampler_chain *) chain->ctx;

    if (i < 0 || (size_t) i >= p->samplers.size()) {
        return nullptr;
    }

    return p->samplers[i];
}

struct llama_sampler * llama_sampler_chain_remove(struct llama_sampler * chain, int32_t i) {
    auto * p = (llama_sampler_chain *) chain->ctx;

    if (i < 0 || (size_t) i >= p->samplers.size()) {
        return nullptr;
    }

    auto * result = p->samplers[i];
    p->samplers.erase(p->samplers.begin() + i);

    return result;
}

int llama_sampler_chain_n(const struct llama_sampler * chain) {
    const auto * p = (const llama_sampler_chain *) chain->ctx;

    return p->samplers.size();
}

//
// samplers
//

// greedy

static const char * llama_sampler_greedy_name(const struct llama_sampler * /*smpl*/) {
    return "greedy";
}

static void llama_sampler_greedy_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
    cur_p->selected = 0;
    for (size_t i = 1; i < cur_p->size; ++i) {
        if (cur_p->data[i].logit > cur_p->data[cur_p->selected].logit) {
            cur_p->selected = i;
        }
    }
}

static struct llama_sampler_i llama_sampler_greedy_i = {
    /* .name   = */ llama_sampler_greedy_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_greedy_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ nullptr,
    /* .free   = */ nullptr,
};

struct llama_sampler * llama_sampler_init_greedy() {
    return new llama_sampler {
        /* .iface = */ &llama_sampler_greedy_i,
        /* .ctx   = */ nullptr,
    };
}

// dist

struct llama_sampler_dist {
    const uint32_t seed;
          uint32_t seed_cur;

    std::mt19937 rng;
};

static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*/) {
    return "dist";
}

static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_dist *) smpl->ctx;
480
481
482

    llama_sampler_softmax_impl(cur_p);

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    cur_p->selected = llama_sample_dist(cur_p, ctx->rng);
}

static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_dist *) smpl->ctx;
    auto * result = llama_sampler_init_dist(ctx->seed);

    // copy the state
    {
        auto * result_ctx = (llama_sampler_dist *) result->ctx;

        result_ctx->rng = ctx->rng;
    }

    return result;
}

static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_dist *) smpl->ctx;
    ctx->seed_cur = get_rng_seed(ctx->seed);
    ctx->rng.seed(ctx->seed_cur);
}

static void llama_sampler_dist_free(struct llama_sampler * smpl) {
    delete (llama_sampler_dist *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_dist_i = {
    /* .name   = */ llama_sampler_dist_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_dist_apply,
    /* .reset  = */ llama_sampler_dist_reset,
    /* .clone  = */ llama_sampler_dist_clone,
    /* .free   = */ llama_sampler_dist_free,
};

struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
    auto seed_cur = get_rng_seed(seed);
    return new llama_sampler {
        /* .iface = */ &llama_sampler_dist_i,
        /* .ctx   = */ new llama_sampler_dist {
            /* .seed     = */ seed,
            /* .seed_cur = */ seed_cur,
            /* .rng      = */ std::mt19937(seed_cur),
        },
    };
}

// softmax

static const char * llama_sampler_softmax_name(const struct llama_sampler * /*smpl*/) {
    return "softmax";
}

static void llama_sampler_softmax_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
    llama_sampler_softmax_impl(cur_p);
}

static struct llama_sampler_i llama_sampler_softmax_i = {
    /* .name   = */ llama_sampler_softmax_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_softmax_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ nullptr,
    /* .free   = */ nullptr,
};

struct llama_sampler * llama_sampler_init_softmax() {
    return new llama_sampler {
        /* .iface = */ &llama_sampler_softmax_i,
        /* .ctx   = */ nullptr,
    };
}

// top-k

struct llama_sampler_top_k {
    const int32_t k;
};

static const char * llama_sampler_top_k_name(const struct llama_sampler * /*smpl*/) {
    return "top-k";
}

static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    const auto * ctx = (llama_sampler_top_k *) smpl->ctx;
    llama_sampler_top_k_impl(cur_p, ctx->k);
}

static struct llama_sampler * llama_sampler_top_k_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_top_k *) smpl->ctx;
    return llama_sampler_init_top_k(ctx->k);
}

static void llama_sampler_top_k_free(struct llama_sampler * smpl) {
    delete (llama_sampler_top_k *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_top_k_i = {
    /* .name   = */ llama_sampler_top_k_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_top_k_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_top_k_clone,
    /* .free   = */ llama_sampler_top_k_free,
};

struct llama_sampler * llama_sampler_init_top_k(int32_t k) {
    return new llama_sampler {
        /* .iface = */ &llama_sampler_top_k_i,
        /* .ctx   = */ new llama_sampler_top_k {
            /* .k = */ k,
        },
    };
}

// top-p

struct llama_sampler_top_p {
    const float  p;
    const size_t min_keep;
};

static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl*/) {
    return "top-p";
}
609

610
611
612
613
614
615
616
617
static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    const auto * ctx = (llama_sampler_top_p *) smpl->ctx;

    if (ctx->p >= 1.0f) {
        return;
    }

    llama_sampler_softmax_impl(cur_p);
618
619
620

    // Compute the cumulative probabilities
    float cum_sum = 0.0f;
621
    size_t last_idx = cur_p->size;
622

623
624
    for (size_t i = 0; i < cur_p->size; ++i) {
        cum_sum += cur_p->data[i].p;
625
626
627

        // Check if the running sum is at least p or if we have kept at least min_keep tokens
        // we set the last index to i+1 to indicate that the current iterate should be included in the set
628
        if (cum_sum >= ctx->p && i + 1 >= ctx->min_keep) {
629
630
631
632
633
634
            last_idx = i + 1;
            break;
        }
    }

    // Resize the output vector to keep only the top-p tokens
635
636
    cur_p->size = last_idx;
}
637

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
static struct llama_sampler * llama_sampler_top_p_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_top_p *) smpl->ctx;
    return llama_sampler_init_top_p(ctx->p, ctx->min_keep);
}

static void llama_sampler_top_p_free(struct llama_sampler * smpl) {
    delete (llama_sampler_top_p *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_top_p_i = {
    /* .name   = */ llama_sampler_top_p_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_top_p_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_top_p_clone,
    /* .free   = */ llama_sampler_top_p_free,
};

struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) {
    return new llama_sampler {
        /* .iface = */ &llama_sampler_top_p_i,
        /* .ctx   = */ new llama_sampler_top_p {
            /* .p        = */ p,
            /* .min_keep = */ min_keep,
        },
    };
}

// min-p

struct llama_sampler_min_p {
    const float  p;
    const size_t min_keep;
};

static const char * llama_sampler_min_p_name(const struct llama_sampler * /*smpl*/) {
    return "min-p";
675
676
}

677
678
679
680
static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    const auto * ctx = (llama_sampler_min_p *) smpl->ctx;

    if (ctx->p <= 0.0f || !cur_p->size) {
681
682
683
684
685
        return;
    }

    bool min_p_applied = false;

686
687
    // if the cur_p aren't sorted, try the unsorted implementation first
    if (!cur_p->sorted) {
688
689
690
        std::vector<llama_token_data> filtered_tokens;

        float max_logit = -FLT_MAX;
691
692
        for (size_t i = 0; i < cur_p->size; ++i) {
            max_logit = std::max(max_logit, cur_p->data[i].logit);
693
        }
694
        const float min_logit = max_logit + logf(ctx->p); // min logit for p_i >= p * p_max
695

696
697
698
        for (size_t i = 0; i < cur_p->size; ++i) {
            if (cur_p->data[i].logit >= min_logit) {
                filtered_tokens.push_back(cur_p->data[i]);
699
700
701
702
            }
        }

        // if we have enough values the operation was a success
703
704
705
        if (filtered_tokens.size() >= ctx->min_keep) {
            memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
            cur_p->size = filtered_tokens.size();
706
707
708
709
            min_p_applied = true;
        }
    }

710
    // if the cur_p are sorted or the unsorted implementation failed, use this implementation
711
712
    if (!min_p_applied) {
        // Sort the logits in descending order
713
714
        if (!cur_p->sorted) {
            std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) {
715
716
                return a.logit > b.logit;
            });
717
            cur_p->sorted = true;
718
719
        }

720
        const float min_logit = cur_p->data[0].logit + logf(ctx->p); // min logit for p_i >= p * p_max
721
722
        size_t i = 1; // first token always matches

723
724
        for (; i < cur_p->size; ++i) {
            if (cur_p->data[i].logit < min_logit && i >= ctx->min_keep) {
725
726
727
728
729
                break; // prob too small
            }
        }

        // Resize the output vector to keep only the matching tokens
730
        cur_p->size = i;
731
    }
732
}
733

734
735
736
static struct llama_sampler * llama_sampler_min_p_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_min_p *) smpl->ctx;
    return llama_sampler_init_min_p(ctx->p, ctx->min_keep);
737
738
}

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
static void llama_sampler_min_p_free(struct llama_sampler * smpl) {
    delete (llama_sampler_min_p *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_min_p_i = {
    /* .name   = */ llama_sampler_min_p_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_min_p_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_min_p_clone,
    /* .free   = */ llama_sampler_min_p_free,
};

struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) {
    return new llama_sampler {
        /* .iface = */ &llama_sampler_min_p_i,
        /* .ctx   = */ new llama_sampler_min_p {
            /* .p        = */ p,
            /* .min_keep = */ min_keep,
        },
    };
}

// typical

struct llama_sampler_typical {
    const float  p;
    const size_t min_keep;
};

static const char * llama_sampler_typical_name(const struct llama_sampler * /*smpl*/) {
    return "typical";
771
772
}

773
774
775
static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    const auto * ctx = (llama_sampler_typical *) smpl->ctx;

776
777
    // Reference implementation:
    // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
778
    if (ctx->p >= 1.0f) {
779
780
781
782
        return;
    }

    // Compute the softmax of logits and calculate entropy
783
    llama_sampler_softmax_impl(cur_p);
784
785

    float entropy = 0.0f;
786
787
    for (size_t i = 0; i < cur_p->size; ++i) {
        entropy += -cur_p->data[i].p * logf(cur_p->data[i].p);
788
789
790
791
    }

    // Compute the absolute difference between negative log probability and entropy for each candidate
    std::vector<float> shifted_scores;
792
793
    for (size_t i = 0; i < cur_p->size; ++i) {
        float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy);
794
795
796
797
        shifted_scores.push_back(shifted_score);
    }

    // Sort tokens based on the shifted_scores and their corresponding indices
798
    std::vector<size_t> indices(cur_p->size);
799
800
801
802
803
804
805
806
807
808
809
810
    std::iota(indices.begin(), indices.end(), 0);

    std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
        return shifted_scores[a] < shifted_scores[b];
    });

    // Compute the cumulative probabilities
    float cum_sum = 0.0f;
    size_t last_idx = indices.size();

    for (size_t i = 0; i < indices.size(); ++i) {
        size_t idx = indices[i];
811
        cum_sum += cur_p->data[idx].p;
812
813

        // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
814
        if (cum_sum > ctx->p && i >= ctx->min_keep - 1) {
815
816
817
818
819
820
            last_idx = i + 1;
            break;
        }
    }

    // Resize the output vector to keep only the locally typical tokens
821
    std::vector<llama_token_data> cur_p_new;
822
823
    for (size_t i = 0; i < last_idx; ++i) {
        size_t idx = indices[i];
824
        cur_p_new.push_back(cur_p->data[idx]);
825
826
    }

827
828
829
830
831
    // Replace the data in cur_p with the cur_p_new data
    std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data);
    cur_p->size = cur_p_new.size();
    cur_p->sorted = false;
}
832

833
834
835
static struct llama_sampler * llama_sampler_typical_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_typical *) smpl->ctx;
    return llama_sampler_init_typical(ctx->p, ctx->min_keep);
836
837
}

838
839
840
static void llama_sampler_typical_free(struct llama_sampler * smpl) {
    delete (llama_sampler_typical *) smpl->ctx;
}
841

842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
static struct llama_sampler_i llama_sampler_typical_i = {
    /* .name   = */ llama_sampler_typical_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_typical_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_typical_clone,
    /* .free   = */ llama_sampler_typical_free,
};

struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) {
    return new llama_sampler {
        /* .iface = */ &llama_sampler_typical_i,
        /* .ctx   = */ new llama_sampler_typical {
            /* .p        = */ p,
            /* .min_keep = */ min_keep,
        },
    };
}

// temp

struct llama_sampler_temp {
    const float temp;
};

static const char * llama_sampler_temp_name(const struct llama_sampler * /*smpl*/) {
    return "temp";
}

static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    const auto * ctx = (llama_sampler_temp *) smpl->ctx;
873
874

    llama_sampler_temp_impl(cur_p, ctx->temp);
875
}
876

877
878
879
880
static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_temp *) smpl->ctx;
    return llama_sampler_init_temp(ctx->temp);
}
881

882
883
884
static void llama_sampler_temp_free(struct llama_sampler * smpl) {
    delete (llama_sampler_temp *) smpl->ctx;
}
885

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
static struct llama_sampler_i llama_sampler_temp_i = {
    /* .name   = */ llama_sampler_temp_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_temp_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_temp_clone,
    /* .free   = */ llama_sampler_temp_free,
};

struct llama_sampler * llama_sampler_init_temp(float temp) {
    return new llama_sampler {
        /* .iface = */ &llama_sampler_temp_i,
        /* .ctx   = */ new llama_sampler_temp {
            /*.temp = */ temp,
        },
    };
}

// temp-ext

struct llama_sampler_temp_ext {
    const float temp;
    const float delta;
    const float exponent;
};

static const char * llama_sampler_temp_ext_name(const struct llama_sampler * /*smpl*/) {
    return "temp-ext";
}

static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    const auto * ctx = (llama_sampler_temp_ext *) smpl->ctx;
    if (ctx->delta > 0) {
        const float min_temp = std::max(0.0f, ctx->temp - ctx->delta);
        const float max_temp = ctx->temp + ctx->delta;
921

922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
        float exponent_val = ctx->exponent;

        // no need to do anything if there is only one (or zero) candidates
        if (cur_p->size <= 1) {
            return;
        }

        // Calculate maximum possible entropy
        float max_entropy = -logf(1.0f / cur_p->size);

        llama_sampler_softmax_impl(cur_p);

        // Calculate entropy of the softmax probabilities
        float entropy = 0.0f;
        for (size_t i = 0; i < cur_p->size; ++i) {
            float prob = cur_p->data[i].p;
            if (prob > 0.0f) { // Ensure no log(0)
                entropy -= prob * logf(prob);
            }
        }

        // Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above)
        float normalized_entropy = entropy / max_entropy;

        // Map the normalized entropy to the desired temperature range using the power function
        float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);

    #ifdef DEBUG
        LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
        LLAMA_LOG_INFO("Entropy: %f\n", entropy);
        LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
        LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
        LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
        LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
    #endif

        // Apply the dynamically calculated temperature scaling
959
        llama_sampler_temp_impl(cur_p, dyn_temp);
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982

        // Re-compute softmax probabilities after scaling logits with dynamic temperature
        const double max_l_double = cur_p->data[0].logit;

        double cum_sum_double = 0.0;
        for (size_t i = 0; i < cur_p->size; ++i) {
            double p = exp(cur_p->data[i].logit - max_l_double);
            cur_p->data[i].p = p; // Store the scaled probability
            cum_sum_double += p;
        }

        for (size_t i = 0; i < cur_p->size; ++i) {
            cur_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
        }

    #ifdef DEBUG
        // Print the updated top 25 probabilities after temperature scaling
        LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
        for (size_t i = 0; i < 25 && i < cur_p->size; ++i) {
            LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, cur_p->data[i].p * 100.0f);
        }
    #endif
    } else {
983
        llama_sampler_temp_impl(cur_p, ctx->temp);
984
    }
985
}
986

987
988
989
990
static struct llama_sampler * llama_sampler_temp_ext_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_temp_ext *) smpl->ctx;
    return llama_sampler_init_temp_ext(ctx->temp, ctx->delta, ctx->exponent);
}
991

992
993
994
static void llama_sampler_temp_ext_free(struct llama_sampler * smpl) {
    delete (llama_sampler_temp_ext *) smpl->ctx;
}
995

996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
static struct llama_sampler_i llama_sampler_temp_ext_i = {
    /* .name   = */ llama_sampler_temp_ext_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_temp_ext_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_temp_ext_clone,
    /* .free   = */ llama_sampler_temp_ext_free,
};

struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) {
    return new llama_sampler {
        /* .iface = */ &llama_sampler_temp_ext_i,
        /* .ctx   = */ new llama_sampler_temp_ext {
            /* .temp     = */ temp,
            /* .delta    = */ delta,
            /* .exponent = */ exponent,
        },
    };
}

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
// xtc

struct llama_sampler_xtc {
    const float    probability;
    const float    threshold;
    const size_t   min_keep;

    const uint32_t seed;
    uint32_t       seed_cur;

    std::mt19937   rng;
};

static const char * llama_sampler_xtc_name(const struct llama_sampler * /*smpl*/) {
    return "xtc";
}

static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_xtc *) smpl->ctx;

    if (ctx->probability <= 0.0f
        || ctx->threshold > 0.5f
        || cur_p->size < 2) {
        return;
    }

    std::uniform_real_distribution<float> distribution(0.0f, 1.0f);
    float chance = distribution(ctx->rng);
    if (chance > ctx->probability) return;

    // in case it's not sorted/recalculated yet
    llama_sampler_softmax_impl(cur_p);

    int pos_last = 0;

    for (size_t i = 0; i < cur_p->size; ++i) {
        if (cur_p->data[i].p >= ctx->threshold) {
            pos_last = i;
        } else break;
    }

    if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) {
        cur_p->data += pos_last;
        cur_p->size -= pos_last;
    }
}

static struct llama_sampler * llama_sampler_xtc_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_xtc *) smpl->ctx;
    auto * result = llama_sampler_init_xtc(ctx->probability, ctx->threshold, ctx->min_keep, ctx->seed);

    // copy the state
    {
        auto * result_ctx = (llama_sampler_xtc *) result->ctx;

        result_ctx->rng = ctx->rng;
    }

    return result;
}

static void llama_sampler_xtc_free(struct llama_sampler * smpl) {
    delete (llama_sampler_xtc *) smpl->ctx;
}

static void llama_sampler_xtc_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_xtc *) smpl->ctx;
    ctx->seed_cur = get_rng_seed(ctx->seed);
    ctx->rng.seed(ctx->seed_cur);
}

static struct llama_sampler_i llama_sampler_xtc_i = {
    /* .name   = */ llama_sampler_xtc_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sample_xtc_apply,
    /* .reset  = */ llama_sampler_xtc_reset,
    /* .clone  = */ llama_sampler_xtc_clone,
    /* .free   = */ llama_sampler_xtc_free,
};

struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) {
    auto seed_cur = get_rng_seed(seed);
    return new llama_sampler {
        /* .iface = */ &llama_sampler_xtc_i,
        /* .ctx   = */ new llama_sampler_xtc {
            /* .probability   = */ p,
            /* .threshold     = */ t,
            /* .min_keep      = */ min_keep,
            /* .seed          = */ seed,
            /* .seed_cur      = */ seed_cur,
            /* .rng           = */ std::mt19937(seed_cur),
        },
    };
}

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
// mirostat

struct llama_sampler_mirostat {
    const int32_t n_vocab;

    const uint32_t seed;
          uint32_t seed_cur;

    const float tau;
    const float eta;

    const int32_t m;

    float mu;
1125

1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
    std::mt19937 rng;
};

static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*smpl*/) {
    return "mirostat";
}

static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_mirostat *) smpl->ctx;

    llama_sampler_softmax_impl(cur_p);

    // Estimate s_hat using the most probable m tokens
    float s_hat = 0.0;
    float sum_ti_bi = 0.0;
    float sum_ti_sq = 0.0;
    for (size_t i = 0; i < size_t(ctx->m - 1) && i < cur_p->size - 1; ++i) {
        float t_i = logf(float(i + 2) / float(i + 1));
        float b_i = logf(cur_p->data[i].p / cur_p->data[i + 1].p);
        sum_ti_bi += t_i * b_i;
        sum_ti_sq += t_i * t_i;
1147
    }
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
    s_hat = sum_ti_bi / sum_ti_sq;

    // Compute k from the estimated s_hat and target surprise value
    float epsilon_hat = s_hat - 1;
    float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat);

    llama_sampler_top_k_impl(cur_p, std::max(int(k), 1));
    llama_sampler_softmax_impl(cur_p);

    const int idx = llama_sample_dist(cur_p, ctx->rng);

    cur_p->selected = idx;

    float observed_surprise = -log2f(cur_p->data[idx].p);
    float e = observed_surprise - ctx->tau;
1163

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
    // Update mu using the learning rate and error
    ctx->mu = ctx->mu - ctx->eta * e;
}

static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_mirostat *) smpl->ctx;
    auto * result = llama_sampler_init_mirostat(ctx->n_vocab, ctx->seed, ctx->tau, ctx->eta, ctx->m);

    // copy the state
    {
        auto * result_ctx = (llama_sampler_mirostat *) smpl->ctx;

        result_ctx->mu  = ctx->mu;
        result_ctx->rng = ctx->rng;
1178
    }
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

    return result;
}

static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
    ctx->mu = 2.0f*ctx->tau;
    ctx->seed_cur = get_rng_seed(ctx->seed);
    ctx->rng.seed(ctx->seed_cur);
}

static void llama_sampler_mirostat_free(struct llama_sampler * smpl) {
    delete (llama_sampler_mirostat *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_mirostat_i = {
    /* .name   = */ llama_sampler_mirostat_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_mirostat_apply,
    /* .reset  = */ llama_sampler_mirostat_reset,
    /* .clone  = */ llama_sampler_mirostat_clone,
    /* .free   = */ llama_sampler_mirostat_free,
};

struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
    auto seed_cur = get_rng_seed(seed);
    return new llama_sampler {
        /* .iface = */ &llama_sampler_mirostat_i,
        /* .ctx   = */ new llama_sampler_mirostat {
            /* .n_vocab  = */ n_vocab,
            /* .seed     = */ seed,
            /* .seed_cur = */ seed_cur,
            /* .tau      = */ tau,
            /* .eta      = */ eta,
            /* .m        = */ m,
            /* .mu       = */ 2.0f*tau,
            /* .rng      = */ std::mt19937(seed_cur),
        },
    };
}

// mirostat v2

struct llama_sampler_mirostat_v2 {
    const uint32_t seed;
          uint32_t seed_cur;

    const float tau;
    const float eta;

    float mu;

    std::mt19937 rng;
};

static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler * /*smpl*/) {
    return "mirostat-v2";
}

static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;

    llama_sampler_softmax_impl(cur_p);

    // Truncate the words with surprise values greater than mu
    cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) {
        return -log2f(candidate.p) > ctx->mu;
    }));

    if (cur_p->size == 0) {
        cur_p->size = 1;
1250
1251
    }

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
    // Normalize the probabilities of the remaining words
    llama_sampler_softmax_impl(cur_p);

    const int idx = llama_sample_dist(cur_p, ctx->rng);

    cur_p->selected = idx;

    float observed_surprise = -log2f(cur_p->data[idx].p);
    float e = observed_surprise - ctx->tau;

    // Update mu using the learning rate and error
    ctx->mu = ctx->mu - ctx->eta * e;
}

static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
    ctx->mu = 2.0f*ctx->tau;
    ctx->seed_cur = get_rng_seed(ctx->seed);
    ctx->rng.seed(ctx->seed_cur);
}

static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_mirostat_v2 *) smpl->ctx;

    auto * result = llama_sampler_init_mirostat_v2(ctx->seed, ctx->tau, ctx->eta);

    // copy the state
    {
        auto * result_ctx = (llama_sampler_mirostat_v2 *) result->ctx;

        result_ctx->mu  = ctx->mu;
        result_ctx->rng = ctx->rng;
1284
1285
    }

1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
    return result;
}

static void llama_sampler_mirostat_v2_free(struct llama_sampler * smpl) {
    delete (llama_sampler_mirostat_v2 *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
    /* .name   = */ llama_sampler_mirostat_v2_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_mirostat_v2_apply,
    /* .reset  = */ llama_sampler_mirostat_v2_reset,
    /* .clone  = */ llama_sampler_mirostat_v2_clone,
    /* .free   = */ llama_sampler_mirostat_v2_free,
};

struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
    auto seed_cur = get_rng_seed(seed);
    return new llama_sampler {
        /* .iface = */ &llama_sampler_mirostat_v2_i,
        /* .ctx   = */ new llama_sampler_mirostat_v2 {
            /* .seed     = */ seed,
            /* .seed_cur = */ seed_cur,
            /* .tau      = */ tau,
            /* .eta      = */ eta,
            /* .mu       = */ 2.0f*tau,
            /* .rng      = */ std::mt19937(seed_cur),
        },
    };
}

// grammar

struct llama_sampler_grammar {
    const struct llama_vocab * vocab;

    std::string grammar_str;
    std::string grammar_root;

    struct llama_grammar * grammar;
};

static const char * llama_sampler_grammar_name(const struct llama_sampler * /*smpl*/) {
    return "grammar";
}

static void llama_sampler_grammar_accept_impl(struct llama_sampler * smpl, llama_token token) {
    auto * ctx = (llama_sampler_grammar *) smpl->ctx;
    if (ctx->grammar) {
        llama_grammar_accept_impl(*ctx->grammar, token);
    }
}

static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_grammar *) smpl->ctx;
    if (ctx->grammar) {
        llama_grammar_apply_impl(*ctx->grammar, cur_p);
    }
}

static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_grammar *) smpl->ctx;
    if (!ctx->grammar) {
        return;
1350
    }
1351
1352
1353
1354
1355

    auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str());

    llama_grammar_free_impl(ctx->grammar);
    ctx->grammar = grammar_new;
1356
1357
}

1358
1359
1360
1361
1362
1363
1364
1365
static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_grammar *) smpl->ctx;

    auto * result = llama_sampler_init_grammar_impl(*ctx->vocab, nullptr, nullptr);

    // copy the state
    {
        auto * result_ctx = (llama_sampler_grammar *) result->ctx;
1366

1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
        if (ctx->grammar) {
            result_ctx->grammar_str  = ctx->grammar_str;
            result_ctx->grammar_root = ctx->grammar_root;

            result_ctx->grammar = llama_grammar_clone_impl(*ctx->grammar);
        }
    }

    return result;
}

static void llama_sampler_grammar_free(struct llama_sampler * smpl) {
    const auto * ctx = (llama_sampler_grammar *) smpl->ctx;

    if (ctx->grammar) {
        llama_grammar_free_impl(ctx->grammar);
    }

    delete ctx;
}

static struct llama_sampler_i llama_sampler_grammar_i = {
    /* .name   = */ llama_sampler_grammar_name,
    /* .accept = */ llama_sampler_grammar_accept_impl,
    /* .apply  = */ llama_sampler_grammar_apply,
    /* .reset  = */ llama_sampler_grammar_reset,
    /* .clone  = */ llama_sampler_grammar_clone,
    /* .free   = */ llama_sampler_grammar_free,
};

struct llama_sampler * llama_sampler_init_grammar_impl(const struct llama_vocab & vocab, const char * grammar_str, const char * grammar_root) {
    auto * ctx = new llama_sampler_grammar;

    if (grammar_str != nullptr && grammar_str[0] != '\0') {
        *ctx = {
            /* .vocab        = */ &vocab,
            /* .grammar_str  = */ grammar_str,
            /* .grammar_root = */ grammar_root,
            /* .grammar      = */ llama_grammar_init_impl(&vocab, grammar_str, grammar_root),
        };
    } else {
        *ctx = {
            /* .vocab        = */ &vocab,
            /* .grammar_str  = */ {},
            /* .grammar_root = */ {},
            /* .grammar      = */ nullptr,
        };
1414
1415
    }

1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
    return new llama_sampler {
        /* .iface = */ &llama_sampler_grammar_i,
        /* .ctx   = */ ctx,
    };
}

// penalties

struct llama_sampler_penalties {
    const int32_t     n_vocab;
    const llama_token special_eos_id;
    const llama_token linefeed_id;

    const int32_t penalty_last_n;
    const float   penalty_repeat;
    const float   penalty_freq;
    const float   penalty_present;

    const bool    penalize_nl;
    const bool    ignore_eos;

    ring_buffer<llama_token> prev;
};

static const char * llama_sampler_penalties_name(const struct llama_sampler * /*smpl*/) {
    return "penalties";
}

static void llama_sampler_penalties_accept(struct llama_sampler * smpl, llama_token token) {
    auto * ctx = (llama_sampler_penalties *) smpl->ctx;
    if (ctx->penalty_last_n == 0) {
        return;
1448
    }
1449
1450

    ctx->prev.push_back(token);
1451
1452
}

1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_penalties *) smpl->ctx;

    if (ctx->ignore_eos) {
        assert(ctx->special_eos_id >= 0);

        // optimistically check if the candidates are not yet sorted/shuffled/truncated
        if (cur_p->size > (size_t) ctx->special_eos_id && cur_p->data[ctx->special_eos_id].id == ctx->special_eos_id) {
            cur_p->data[ctx->special_eos_id].logit = -INFINITY;
        } else {
            // else, search for the special EOS token
            for (size_t i = 0; i < cur_p->size; ++i) {
                if (cur_p->data[i].id == ctx->special_eos_id) {
                    cur_p->data[i].logit = -INFINITY;
                    break;
                }
            }
        }
    }

    if ((ctx->penalty_last_n == 0) ||
        (ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) {
1475
1476
1477
        return;
    }

1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
    bool nl_found = false;
    size_t nl_idx = 0;
    float nl_logit = -INFINITY;
    if (!ctx->penalize_nl) {
        assert(ctx->linefeed_id >= 0);

        // optimistically check if the candidates are not yet sorted/shuffled/truncated
        if (cur_p->size > (size_t) ctx->linefeed_id && cur_p->data[ctx->linefeed_id].id == ctx->linefeed_id) {
            nl_found = true;
            nl_idx = ctx->linefeed_id;
            nl_logit = cur_p->data[ctx->linefeed_id].logit;
        } else {
            // else, search for the linefeed token
            for (size_t i = 0; i < cur_p->size; ++i) {
                if (cur_p->data[i].id == ctx->linefeed_id) {
                    nl_found = true;
                    nl_idx = i;
                    nl_logit = cur_p->data[i].logit;
                    break;
                }
            }
        }
    }
1501
1502

    // Create a frequency map to count occurrences of each token in last_tokens
1503
1504
1505
1506
1507
1508
    // TODO: optimize this by maintaining the token count in the sampler context
    using llama_token_cnt = std::unordered_map<llama_token, int>;
    llama_token_cnt token_count;

    for (int i = 0; i < std::min<int>(ctx->penalty_last_n, ctx->prev.size()); ++i) {
        token_count[ctx->prev.rat(i)]++;
1509
1510
    }

1511
1512
1513
    // Apply frequency and presence penalties to the cur_p
    for (size_t i = 0; i < cur_p->size; ++i) {
        const auto token_iter = token_count.find(cur_p->data[i].id);
1514
1515
1516
1517
1518
1519
1520
1521
        if (token_iter == token_count.end()) {
            continue;
        }

        const int count = token_iter->second;

        // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
        // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
1522
1523
        if (cur_p->data[i].logit <= 0) {
            cur_p->data[i].logit *= ctx->penalty_repeat;
1524
        } else {
1525
            cur_p->data[i].logit /= ctx->penalty_repeat;
1526
1527
        }

1528
        cur_p->data[i].logit -= float(count) * ctx->penalty_freq + float(count > 0) * ctx->penalty_present;
1529
1530
    }

1531
    cur_p->sorted = false;
1532

1533
1534
1535
    if (!ctx->penalize_nl && nl_found) {
        // restore the logit of the newline token if it was penalized
        cur_p->data[nl_idx].logit = nl_logit;
1536
1537
1538
    }
}

1539
1540
1541
1542
static void llama_sampler_penalties_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_penalties *) smpl->ctx;
    ctx->prev.clear();
}
1543

1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
static struct llama_sampler * llama_sampler_penalties_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_penalties *) smpl->ctx;
    auto * result = llama_sampler_init_penalties(
            ctx->n_vocab,
            ctx->special_eos_id,
            ctx->linefeed_id,
            ctx->penalty_last_n,
            ctx->penalty_repeat,
            ctx->penalty_freq,
            ctx->penalty_present,
            ctx->penalize_nl,
            ctx->ignore_eos);

    // copy the state
    {
        auto * result_ctx = (llama_sampler_penalties *) result->ctx;
1560

1561
        result_ctx->prev = ctx->prev;
1562
1563
    }

1564
    return result;
1565
1566
}

1567
1568
1569
static void llama_sampler_penalties_free(struct llama_sampler * smpl) {
    delete (llama_sampler_penalties *) smpl->ctx;
}
1570

1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
static struct llama_sampler_i llama_sampler_penalties_i = {
    /* .name   = */ llama_sampler_penalties_name,
    /* .accept = */ llama_sampler_penalties_accept,
    /* .apply  = */ llama_sampler_penalties_apply,
    /* .reset  = */ llama_sampler_penalties_reset,
    /* .clone  = */ llama_sampler_penalties_clone,
    /* .free   = */ llama_sampler_penalties_free,
};

struct llama_sampler * llama_sampler_init_penalties(
        int32_t n_vocab,
        llama_token special_eos_id,
        llama_token linefeed_id,
        int32_t penalty_last_n,
        float penalty_repeat,
        float penalty_freq,
        float penalty_present,
        bool penalize_nl,
        bool ignore_eos) {
    if (linefeed_id == LLAMA_TOKEN_NULL) {
        penalize_nl = true;
    }
1593

1594
1595
    if (special_eos_id == LLAMA_TOKEN_NULL) {
        ignore_eos = false;
1596
1597
    }

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
    penalty_last_n = std::max(penalty_last_n, 0);

    return new llama_sampler {
        /* .iface = */ &llama_sampler_penalties_i,
        /* .ctx   = */ new llama_sampler_penalties {
            /* .n_vocab         = */ n_vocab,
            /* .special_eos_id  = */ special_eos_id,
            /* .linefeed_id     = */ linefeed_id,
            /* .penalty_last_n  = */ penalty_last_n,
            /* .penalty_repeat  = */ penalty_repeat,
            /* .penalty_freq    = */ penalty_freq,
            /* .penalty_present = */ penalty_present,
            /* .penalize_nl     = */ penalize_nl,
            /* .ignore_eos      = */ ignore_eos,
            /* .prev            = */ ring_buffer<llama_token>(penalty_last_n),
        },
    };
}
1616

1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
// DRY

struct llama_sampler_dry {
    int32_t total_context_size;

    const float   dry_multiplier;
    const float   dry_base;
    const int32_t dry_allowed_length;
    const int32_t dry_penalty_last_n;

    std::unordered_multimap<llama_token, std::vector<llama_token>> dry_processed_breakers;
    std::vector<int> dry_repeat_count;
    std::unordered_map<llama_token, int> dry_max_token_repeat;
    ring_buffer<llama_token> last_tokens;
};

// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap<llama_token, std::vector<llama_token>>& token_sequences, int max_tail_len = -1) {
    for (llama_token token_id = 0; token_id < (llama_token)vocab.n_vocab; token_id++) {
        std::string word = llama_detokenize(vocab, {token_id}, true);
        if (word.find(str) != std::string::npos) {
            token_sequences.emplace(token_id, std::vector<llama_token>());
        } else {
            size_t word_len = word.size(), str_len = str.size();
            size_t pos = -1;
            while ((pos = word.find(str[0], pos + 1)) != std::string::npos) {
                bool match = true;
                size_t i;
                for (i = 1; i < str_len && i + pos < word_len; ++i) {
                    if (word[pos + i] != str[i]) {
                        match = false;
                        break;
                    }
                }
                if (match) {
                    std::vector<llama_token> tokenization = llama_tokenize_internal(vocab, str.substr(i), false, false);
                    if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) {
                        tokenization.resize(max_tail_len);
                    }

                    // Ensure we don't already have a duplicate matching tokenization
                    auto its = token_sequences.equal_range(token_id);
                    bool found = false;
                    for (auto it = its.first; it != its.second; ++it) {
                        if (tokenization == it->second) {
                            found = true;
                            break;
                        }
                    }
                    if (!found) {
                        token_sequences.emplace(token_id, tokenization);
                    }
                }
            }
        }
    }
}

static const char * llama_sampler_dry_name(const struct llama_sampler * /*smpl*/) {
    return "dry";
}

static void llama_sampler_dry_accept(struct llama_sampler * smpl, llama_token token) {
    auto * ctx = (llama_sampler_dry *) smpl->ctx;
    if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) {
        return;
    }

    ctx->last_tokens.push_back(token);
}

// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_dry *) smpl->ctx;

    if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) {
        return;
    }

    int32_t effective_dry_penalty_last_n = (ctx->dry_penalty_last_n == -1) ? ctx->total_context_size : std::max(ctx->dry_penalty_last_n, 0);
    int last_n_repeat = std::min(std::min((int)ctx->last_tokens.size(), effective_dry_penalty_last_n), ctx->total_context_size);

    if (last_n_repeat <= ctx->dry_allowed_length) {
        return;
    }

    ctx->dry_repeat_count.assign(last_n_repeat, 0);
    ctx->dry_max_token_repeat.clear();

    // Step 1: Look for restart sequences to limit the maximum repetition length.
    // Work backwards through the context looking for any token that begins a restart sequence.
    //
    // The collection `restart_sequences` is a mapping from a "head" token to all "tail"
    // sequences that together comprise a restart sequence. This allows us to quickly check
    // whether each token is the head of a complete sequence. Most restart sequences are actually
    // a single token, and for these the "tail" is an empty vector.
    //
    // If the token is a "head", test all restart sequences that begin with this token
    // (there will often only be one sequence for each token, but if sequences like 'aaaq1' and
    // 'aaa1' are used as restart strings, both could start with 'aaa' when tokenized). The
    // longest matching sequence (if any) is used to limit the maximum repetition length.
    //
    // Note that in the case case of a short sequence contained in a longer one, this might fail to
    // find the smallest value for `rep_limit`. For example, if 'amniotic' and 'ni' are both used as
    // restart sequences, 'ni' will be found first, and since it's shorter it will fail to suppress
    // 'otic'. This is a minor issue since fully contained restart sequences are likely to be rare.
    //
    // This is theoretically worst-case O(N^2) for arbitrary restart sequences, which is why we
    // have already clamped the maximum tail sequence length when generating `restart_sequences`.
    // With clamping, this scan is O(N) in the context length.

    int rep_limit = last_n_repeat;
    for (int i = 0; i < last_n_repeat; ++i) {
        llama_token token = ctx->last_tokens.rat(i);
        auto its = ctx->dry_processed_breakers.equal_range(token);
        if (its.first == ctx->dry_processed_breakers.end()) {
            continue;
        }
        int longest_match = -1;
        for (auto it = its.first; it != its.second; ++it) {
            // Note that (*it) does not contain the head character, so seq_len will be
            // the restart sequence length minus 1.
            // In the common case of a single-token restart sequence, (*it) will be empty
            // and we will trivially match.
            int seq_len = (int)it->second.size();
            if (seq_len > longest_match && seq_len <= (int)i) {
                bool match = true;
                for (int offset = 0; offset < seq_len; ++offset) {
                    // The -1 when indexing `last_tokens` is because we already matched the head.
                    if (it->second[offset] != ctx->last_tokens.rat(i - offset - 1)) {
                        match = false;
                        break;
                    }
                }
                if (match) {
                    longest_match = seq_len;
                }
            }
        }
        if (longest_match >= 0) {
            // We found a restart sequence starting `i` tokens from the end and continuing for
            // `longest_match` tokens.
            rep_limit = i - longest_match;
            break;
        }
    }
    if (rep_limit < ctx->dry_allowed_length) {
        return;
    }

    // Step 2: Iterate in reverse over the last N tokens of the context, using the "Z-algorithm" (in
    // the reverse direction) to efficiently compute the positions and lengths of suffixes appearing
    // elsewhere in the context. We limit the suffix length to `rep_limit` to respect restart sequences.
    //
    // This algorithm is not currently documented on Wikipedia, but there is a clear description here:
    // https://ivanyu.me/blog/2014/10/15/z-algorithm/
    //
    // The code below is adapted from the public domain implementation by the same author here:
    // https://github.com/ivanyu/string-algorithms/blob/master/z_algorithm.py
    //
    // Example:
    // Last N tokens: a b c c b c y a b c
    // Repeat counts: 0 0 3 1 0 2 0 0 0 0
    //                    ^
    //   This `3` means that the last three tokens of the context (a b c) also appear here.
    //
    // This step is worst case O(N) since the Z-algorithm is linear, despite the appearance of nested
    // for/while loops. This can be seen by observing that the `lt` and `rt` bounds are set after each
    // repeated suffix is detected (i.e. after each while loop when n > 0). These bound variables
    // ensure that the inner while loops only examine each token in the context once as the outer
    // for loop iterates over the context.

    {
        const int last = last_n_repeat - 1;
        int rt = 0, lt = 0;

        for (int k = 1; k < last_n_repeat; ++k) {
            if (k > rt) {
                // If k is outside the current Z-box, do naive computation.
                int n = 0;
                while (n + k < last_n_repeat && ctx->last_tokens.rat(n) == ctx->last_tokens.rat(n+k)) {
                    ++n;
                }
                ctx->dry_repeat_count[last - k] = std::min(n, rep_limit);
                if (n > 0) {
                    lt = k;
                    rt = k+n-1;
                }
            } else {
                // If k is inside the current Z-box, consider two cases.

                int p = k - lt; // Pair index.
                int right_part_len = rt - k + 1;

                if (ctx->dry_repeat_count[last - p] < right_part_len) {
                    int n = std::min(ctx->dry_repeat_count[last - p], rep_limit);
                    ctx->dry_repeat_count[last - k] = n;
                } else {
                    int i = rt + 1;
                    while (i < last_n_repeat && ctx->last_tokens.rat(i) == ctx->last_tokens.rat(i - k)) {
                        i += 1;
                    }

                    int n = std::min(i - k, rep_limit);
                    ctx->dry_repeat_count[last - k] = n;
                    lt = k;
                    rt = i - 1;
                }
            }
        }
    }

    // Step 3: Iterate over dry_repeat_count and last_tokens, examining the maximum repeat length
    // that would be generated by emitting each new token that would extend a sequence.
    //
    // Following the same example as above:
    // Last N tokens: a b c c b c y a b c
    // Repeat counts: 0 0 3 1 0 2 0 0 0 0
    //
    // For each non-zero, look ahead one token. This token, if emitted, would extend the repetition.
    // c: 3 -> 4 (from `a b c` to `a b c c`)
    // b: 1 -> 2 (from `c` to `c b`)
    // y: 2 -> 3 (from `b c` to `b c y`)

    for (int i = 0; i < last_n_repeat - 1; ++i) {
        int repeat_len = ctx->dry_repeat_count[i];
        if (repeat_len >= ctx->dry_allowed_length) {
            // This token ends a repeat, so the next token would continue one.
            // By convention, the value of `repeat_len` only includes the tokens currently
            // in the context, not the new token that would be added.
            llama_token token = ctx->last_tokens.rat(last_n_repeat - 2 - i);
            // Track the maximum sequence ending in this token.
            const auto& it = ctx->dry_max_token_repeat.find(token);
            if (it == ctx->dry_max_token_repeat.end() || it->second < repeat_len) {
                ctx->dry_max_token_repeat[token] = repeat_len;
            }
        }
    }

    // Step 4: Apply logit penalties based on the maximum repeat length for relevant tokens.

    // Prevent floating point overflow in `pow(penalty_base, exponent)` by clamping to `max_exponent`.
    // Compute it from `penalty_base` and the approximate log of `std::numeric_limits<float>::max()`
    const float FLOAT_MAX_LOG = 88.7228391f;
    int max_exponent = 0;
    if (ctx->dry_base > 1.000001f) {
        max_exponent = FLOAT_MAX_LOG / std::log(ctx->dry_base);
    }

    for (size_t i = 0; i < cur_p->size; ++i) {
        const auto& af_kvp = ctx->dry_max_token_repeat.find(cur_p->data[i].id);
        if (af_kvp != ctx->dry_max_token_repeat.end()) {
            // Check all sequence breakers starting with this token
            auto range = ctx->dry_processed_breakers.equal_range(cur_p->data[i].id);
            bool is_single_token_breaker = false;

            for (auto it = range.first; it != range.second; ++it) {
                if (it->second.empty()) {
                    is_single_token_breaker = true;
                    break;
                }
            }

            // Apply penalty only if it's not a single-token sequence breaker
            if (!is_single_token_breaker) {
                int repeat_exp = af_kvp->second - ctx->dry_allowed_length;
                if (max_exponent > 0 && repeat_exp > max_exponent) {
                    repeat_exp = max_exponent;
                }
                float penalty = ctx->dry_multiplier * std::pow(ctx->dry_base, repeat_exp);
                cur_p->data[i].logit -= penalty;
            }
        }
    }

    cur_p->sorted = false;
}

static void llama_sampler_dry_reset(struct llama_sampler * smpl) {
    auto * ctx = (llama_sampler_dry *) smpl->ctx;
    ctx->last_tokens.clear();
    ctx->dry_repeat_count.clear();
    ctx->dry_max_token_repeat.clear();
}

static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (llama_sampler_dry *) smpl->ctx;

    llama_vocab dummy_vocab;

    // dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying
    auto * result = llama_sampler_init_dry_impl(dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);

    // Copy the state, including the processed breakers
    {
        auto * result_ctx = (llama_sampler_dry *) result->ctx;
        result_ctx->dry_processed_breakers = ctx->dry_processed_breakers;
        result_ctx->dry_repeat_count = ctx->dry_repeat_count;
        result_ctx->dry_max_token_repeat = ctx->dry_max_token_repeat;
        result_ctx->last_tokens = ctx->last_tokens;
    }

    return result;
}

static void llama_sampler_dry_free(struct llama_sampler * smpl) {
    delete (llama_sampler_dry *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_dry_i = {
    /* .name   = */ llama_sampler_dry_name,
    /* .accept = */ llama_sampler_dry_accept,
    /* .apply  = */ llama_sampler_dry_apply,
    /* .reset  = */ llama_sampler_dry_reset,
    /* .clone  = */ llama_sampler_dry_clone,
    /* .free   = */ llama_sampler_dry_free,
};

struct llama_sampler * llama_sampler_init_dry_impl(const struct llama_vocab & vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
    int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0);
    std::unordered_multimap<llama_token, std::vector<llama_token>> processed_breakers;
    const int MAX_CHAR_LEN = 40;
    const int MAX_SEQ_LEN = 20;

    const bool dry_enabled = (dry_multiplier != 0.0f && dry_base >= 1.0f && dry_penalty_last_n != 0);

    if (dry_enabled && seq_breakers != nullptr && num_breakers > 0) {
        // Process sequence breakers
        for (size_t i = 0; i < num_breakers; ++i) {
            if (seq_breakers[i] == nullptr || std::strlen(seq_breakers[i]) == 0) {
                LLAMA_LOG_WARN("skipping null or empty DRY sequence breaker at index %zu\n", i);
                continue;
            }

            std::string sequence_break(seq_breakers[i]);
            if (sequence_break.empty()) {
                LLAMA_LOG_WARN("skipping empty DRY sequence breaker\n");
                continue;
            }

            if (sequence_break.size() > MAX_CHAR_LEN) {
                LLAMA_LOG_WARN("truncating DRY sequence breaker to %d characters\n", MAX_CHAR_LEN);
                sequence_break.resize(MAX_CHAR_LEN);
            }

            get_overlapping_token_sequences(vocab, sequence_break, processed_breakers, MAX_SEQ_LEN);
        }
    }

    return new llama_sampler {
        /* .iface = */ &llama_sampler_dry_i,
        /* .ctx   = */ new llama_sampler_dry {
            /* .total_context_size     = */ context_size,
            /* .dry_multiplier         = */ dry_multiplier,
            /* .dry_base               = */ dry_base,
            /* .dry_allowed_length     = */ dry_allowed_length,
            /* .dry_penalty_last_n     = */ dry_penalty_last_n,
            /* .dry_processed_breakers = */ std::move(processed_breakers),
            /* .dry_repeat_count       = */ dry_enabled ? std::vector<int>(effective_dry_penalty_last_n, 0) : std::vector<int>{},
            /* .dry_max_token_repeat   = */ {},
            /* .last_tokens            = */ dry_enabled ? ring_buffer<llama_token>(effective_dry_penalty_last_n) : ring_buffer<llama_token>(0),
        },
    };
}

// wrapper for test-sampling.cpp
struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers) {
    llama_vocab dummy_vocab;
    auto * result = llama_sampler_init_dry_impl(dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0);
    auto * ctx = (llama_sampler_dry *) result->ctx;

    // Process the token-based sequence breakers
    ctx->dry_processed_breakers.clear();
    if (seq_breakers.empty()) {
        LLAMA_LOG_WARN("empty DRY sequence breakers list in llama_sampler_init_dry_testing\n");
    } else {
        for (const auto& breaker : seq_breakers) {
            if (breaker.empty()) {
                LLAMA_LOG_WARN("skipping DRY empty sequence breaker\n");
                continue;
            }
            llama_token head_token = breaker[0];
            std::vector<llama_token> tail_tokens(breaker.begin() + 1, breaker.end());
            ctx->dry_processed_breakers.emplace(head_token, std::move(tail_tokens));
        }

        if (ctx->dry_processed_breakers.empty()) {
            LLAMA_LOG_WARN("no valid DRY sequence breakers processed in llama_sampler_init_dry_testing\n");
        }
    }

    return result;
}

2011
// logit-bias
2012

2013
2014
struct llama_sampler_logit_bias {
    const int32_t n_vocab;
2015

2016
    const std::vector<llama_logit_bias> logit_bias;
2017

2018
2019
2020
2021
2022
    std::vector<llama_logit_bias> to_search;
};

static const char * llama_sampler_logit_bias_name(const struct llama_sampler * /*smpl*/) {
    return "logit-bias";
2023
2024
}

2025
2026
2027
2028
2029
2030
static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_logit_bias *) smpl->ctx;

    if (ctx->logit_bias.empty()) {
        return;
    }
2031

2032
    ctx->to_search.clear();
2033

2034
2035
2036
2037
2038
2039
2040
2041
    // update the candidates that have not been shuffled in the vocabulary (i.e. idx == id)
    for (const auto & lb : ctx->logit_bias) {
        if (lb.token >= 0 && cur_p->size > (size_t) lb.token && cur_p->data[lb.token].id == lb.token) {
            cur_p->data[lb.token].logit += lb.bias;
        } else {
            ctx->to_search.push_back(lb);
        }
    }
2042

2043
2044
    if (ctx->to_search.empty()) {
        return;
2045
2046
    }

2047
2048
2049
2050
2051
2052
2053
2054
    // search for the remaining candidates that were not found in the previous step
    for (size_t i = 0; i < cur_p->size; ++i) {
        for (const auto & lb : ctx->to_search) {
            if (cur_p->data[i].id == lb.token) {
                cur_p->data[i].logit += lb.bias;
                break;
            }
        }
2055
    }
2056
}
2057

2058
2059
2060
2061
static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx;
    return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data());
}
2062

2063
2064
2065
static void llama_sampler_logit_bias_free(struct llama_sampler * smpl) {
    delete (llama_sampler_logit_bias *) smpl->ctx;
}
2066

2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
static struct llama_sampler_i llama_sampler_logit_bias_i = {
    /* .name   = */ llama_sampler_logit_bias_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_logit_bias_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_logit_bias_clone,
    /* .free   = */ llama_sampler_logit_bias_free,
};

struct llama_sampler * llama_sampler_init_logit_bias(
                         int32_t   n_vocab,
                         int32_t   n_logit_bias,
          const llama_logit_bias * logit_bias) {
    return new llama_sampler {
        /* .iface = */ &llama_sampler_logit_bias_i,
        /* .ctx   = */ new llama_sampler_logit_bias {
            /* .n_vocab    = */ n_vocab,
            /* .logit_bias = */ std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias),
            /* .to_search  = */ {},
        },
    };
}
2089

2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
// infill

//#define GGML_DEBUG_SAMPLER_INFILL

struct llama_sampler_infill {
    const struct llama_vocab * vocab;

    std::vector<char> buf0;
    std::vector<char> buf1;
};

static const char * llama_sampler_infill_name(const struct llama_sampler * /*smpl*/) {
    return "infill";
}

static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
    auto * ctx = (llama_sampler_infill *) smpl->ctx;

    llama_sampler_softmax_impl(cur_p);

#if defined(GGML_DEBUG_SAMPLER_INFILL)
#define LOG_DBG_CUR LLAMA_LOG_DEBUG
#else
#define LOG_DBG_CUR(...)
#endif

    for (size_t i = 0; i < cur_p->size; ++i) {
        LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
    }

    float p_txt_sum = 0.0f;
    float p_eog_sum = 0.0f;

    for (size_t i = 0; i < cur_p->size; ++i) {
        if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
            p_eog_sum += cur_p->data[i].p;
        } else {
            p_txt_sum += cur_p->data[i].p;
        }
    }

    const float rat = p_eog_sum == 0.0 ? INFINITY : p_txt_sum / p_eog_sum; GGML_UNUSED(rat);

    LOG_DBG_CUR("%s: p_txt_sum = %.2f, p_eog_sum = %.2f, rat = %.2f, n = %zu\n", __func__, p_txt_sum, p_eog_sum, rat, cur_p->size);

    if (3*p_eog_sum*cur_p->size > p_txt_sum) {
        LOG_DBG_CUR("%s: the ratio p_txt/p_eog = %.2f is too low -> sampling EOG\n", __func__, p_txt_sum/p_eog_sum);

        // keep just the EOG tokens
        const auto size_org = cur_p->size;

        cur_p->size = 0;

        float p_sum = 0.0f;

        for (size_t i = 0; i < size_org; ++i) {
            if (llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id)) {
                p_sum += cur_p->data[i].p;

                cur_p->data[cur_p->size++] = cur_p->data[i];
            }
        }

        // normalize probs
        for (size_t i = 0; i < cur_p->size; ++i) {
            cur_p->data[i].p /= p_sum;
        }

        return;
    }

    size_t n_combined = 0; GGML_UNUSED(n_combined);

    // combine tokens with common prefix
    for (size_t i0 = 0; i0 < cur_p->size; ++i0) {
        for (size_t i1 = 0; i1 < cur_p->size; ++i1) {
            if (cur_p->data[i0].logit == -INFINITY) {
                break;
            }

            if (i0 == i1 || cur_p->data[i1].logit == -INFINITY) {
                continue;
            }

            int len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
            if (len0 < 0) {
                ctx->buf0.resize(len0);
                len0 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
                assert(len0 > 0);
            }

            int len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
            if (len1 < 0) {
                ctx->buf1.resize(len1);
                len1 = llama_token_to_piece_impl(*ctx->vocab, cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
                assert(len1 > 0);
            }

            // token i0 is a prefix of token i1
            if (len0 > 0 && len0 <= len1 && memcmp(ctx->buf0.data(), ctx->buf1.data(), len0) == 0) {
                int dst = i0;
                int src = i1;

                // merge into the token with higher probability
                if (cur_p->data[i1].p > cur_p->data[i0].p) {
                    std::swap(dst, src);
                }

                cur_p->data[dst].p += cur_p->data[src].p;
                cur_p->data[src].logit = -INFINITY;
                cur_p->data[src].p     = 0.0f;

                n_combined++;
            }
        }
    }

    size_t n_non_eog = 0;

    size_t size_org = cur_p->size;

    float p_sum = 0.0f;
    float thold = 0.2f;

    cur_p->size = 0;

    LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold);

    for (size_t i = 0; i < size_org; ++i) {
        const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);

        if (cur_p->data[i].p < thold && !is_eog) {
            continue;
        }

        if (!is_eog) {
            ++n_non_eog;
        }

        p_sum += cur_p->data[i].p;

        // keep this token
        cur_p->data[cur_p->size++] = cur_p->data[i];
    }

    LOG_DBG_CUR("%s: n_non_eog = %zu\n", __func__, n_non_eog);

    // if no non-EOG tokens are left -> reduce cur_p to single EOT token
    if (n_non_eog == 0) {
        cur_p->size = 1;
        cur_p->data[0].id = llama_token_eot_impl(*ctx->vocab);
        cur_p->data[0].logit = 1.0f;

        return;
    }

    // normalize probs
    for (size_t i = 0; i < cur_p->size; ++i) {
        cur_p->data[i].p /= p_sum;

        LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
    }

    size_org = cur_p->size;
    p_sum = 0.0f;
    thold = 1.0/(n_non_eog + 1);

    cur_p->size = 0;

    LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold);

    for (size_t i = 0; i < size_org; ++i) {
        const bool is_eog = llama_token_is_eog_impl(*ctx->vocab, cur_p->data[i].id);

        if (cur_p->data[i].p < thold && !is_eog) {
            continue;
        }

        p_sum += cur_p->data[i].p;

        cur_p->data[cur_p->size++] = cur_p->data[i];
    }

    // normalize probs
    for (size_t i = 0; i < cur_p->size; ++i) {
        cur_p->data[i].p /= p_sum;

        LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
    }

#undef LOG_DBG_CUR
}

static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) {
    const auto * ctx = (const llama_sampler_infill *) smpl->ctx;
    return llama_sampler_init_infill_impl(*ctx->vocab);
}

static void llama_sampler_infill_free(struct llama_sampler * smpl) {
    delete (llama_sampler_infill *) smpl->ctx;
}

static struct llama_sampler_i llama_sampler_infill_i = {
    /* .name   = */ llama_sampler_infill_name,
    /* .accept = */ nullptr,
    /* .apply  = */ llama_sampler_infill_apply,
    /* .reset  = */ nullptr,
    /* .clone  = */ llama_sampler_infill_clone,
    /* .free   = */ llama_sampler_infill_free,
};

struct llama_sampler * llama_sampler_init_infill_impl(
        const struct llama_vocab & vocab) {
    return new llama_sampler {
        /* .iface = */ &llama_sampler_infill_i,
        /* .ctx   = */ new llama_sampler_infill {
            /* .vocab = */ &vocab,
            /* .buf0 = */ std::vector<char>(512),
            /* .buf1 = */ std::vector<char>(512),
        },
    };
}

2313
// utils
2314

2315
2316
2317
uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) {
    if (smpl->iface == &llama_sampler_dist_i) {
        return ((const llama_sampler_dist *) smpl->ctx)->seed_cur;
2318
2319
    }

2320
2321
2322
    if (smpl->iface == &llama_sampler_mirostat_i) {
        return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur;
    }
2323

2324
2325
2326
    if (smpl->iface == &llama_sampler_mirostat_v2_i) {
        return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur;
    }
2327

2328
2329
2330
2331
2332
2333
2334
2335
    if (smpl->iface == &llama_sampler_chain_i) {
        const auto * ctx = (const llama_sampler_chain *) smpl->ctx;
        for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) {
            const uint32_t seed = llama_sampler_get_seed(*it);
            if (seed != LLAMA_DEFAULT_SEED) {
                return seed;
            }
        }
2336
    }
2337
2338

    return LLAMA_DEFAULT_SEED;
2339
2340
}

2341
// perf
2342

2343
2344
struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) {
    struct llama_perf_sampler_data data = {};
2345

2346
2347
    if (chain == nullptr || chain->iface != &llama_sampler_chain_i) {
        GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__);
2348
2349
    }

2350
    const auto * ctx = (const struct llama_sampler_chain *) chain->ctx;
2351

2352
2353
    data.t_sample_ms = 1e-3 * ctx->t_sample_us;
    data.n_sample    = std::max(0, ctx->n_sample);
2354

2355
2356
    return data;
}
2357

2358
2359
2360
2361
2362
void llama_perf_sampler_print(const struct llama_sampler * chain) {
    const auto data = llama_perf_sampler(chain);

    LLAMA_LOG_INFO("%s:    sampling time = %10.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
            __func__, data.t_sample_ms, data.n_sample, data.t_sample_ms / data.n_sample, 1e3 / data.t_sample_ms * data.n_sample);
2363
2364
}

2365
2366
2367
2368
2369
2370
2371
2372
void llama_perf_sampler_reset(struct llama_sampler * chain) {
    if (chain == nullptr || chain->iface != &llama_sampler_chain_i) {
        GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__);
    }

    auto * ctx = (struct llama_sampler_chain *) chain->ctx;

    ctx->t_sample_us = ctx->n_sample = 0;
2373
}