ggml.c 246 KB
Newer Older
1
/**
2
 * llama.cpp - commit ba1cb19cdd0d92e012e0f6e009e0620f854b6afd - do not edit this file
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
 *
 * MIT License
 *
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

27
#define _CRT_SECURE_NO_DEPRECATE // Disables "unsafe" warnings on Windows
28
29
#define _USE_MATH_DEFINES // For M_PI on MSVC

30
#include "ggml-backend.h"
31
#include "ggml-impl.h"
32
#include "ggml-threading.h"
33
#include "ggml.h"
34
35
36

// FIXME: required here for quantization functions
#include "ggml-quants.h"
37
38
39
40

#ifdef GGML_USE_CPU_HBM
#include <hbwmalloc.h>
#endif
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
#include <alloca.h>
#endif

#include <assert.h>
#include <errno.h>
#include <time.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <stdio.h>
#include <float.h>
#include <limits.h>
#include <stdarg.h>
#include <signal.h>
#if defined(__gnu_linux__)
#include <syscall.h>
#endif

65
#if defined(__APPLE__)
66
#include <unistd.h>
67
68
#include <mach/mach.h>
#include <TargetConditionals.h>
69
70
71
72
73
74
75
76
77
78
#endif

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
    #define NOMINMAX
#endif
#include <windows.h>
#endif

79
#define UNUSED GGML_UNUSED
80

81
82
83
#if defined(_MSC_VER)
#define m512bh(p) p
#define m512i(p) p
84
#else
85
86
#define m512bh(p) (__m512bh)(p)
#define m512i(p) (__m512i)(p)
87
88
#endif

89
90
// precomputed f32 table for f16 (256 KB) (ggml-impl.h)
float ggml_table_f32_f16[1 << 16];
91
92
93

#if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
    (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
94
95
96
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#include <sys/wait.h>

#if defined(__ANDROID__)
#include <unwind.h>
#include <dlfcn.h>
#include <stdio.h>

struct backtrace_state {
    void ** current;
    void ** end;
};

static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) {
    struct backtrace_state * state = (struct backtrace_state *)arg;
    uintptr_t pc = _Unwind_GetIP(context);
    if (pc) {
        if (state->current == state->end) {
            return _URC_END_OF_STACK;
        } else {
            *state->current++ = (void*)pc;
        }
    }
    return _URC_NO_REASON;
}

static void ggml_print_backtrace_symbols(void) {
    const int max = 100;
    void* buffer[max];

    struct backtrace_state state = {buffer, buffer + max};
    _Unwind_Backtrace(unwind_callback, &state);

    int count = state.current - buffer;

    for (int idx = 0; idx < count; ++idx) {
        const void * addr = buffer[idx];
        const char * symbol = "";

        Dl_info info;
        if (dladdr(addr, &info) && info.dli_sname) {
            symbol = info.dli_sname;
        }

        fprintf(stderr, "%d: %p %s\n", idx, addr, symbol);
    }
}
#elif defined(__linux__) && defined(__GLIBC__)
#include <execinfo.h>
static void ggml_print_backtrace_symbols(void) {
    void * trace[100];
    int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
    backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
}
#else
static void ggml_print_backtrace_symbols(void) {
    // platform not supported
}
#endif

static void ggml_print_backtrace(void) {
    char attach[32];
    snprintf(attach, sizeof(attach), "attach %d", getpid());
    int pid = fork();
    if (pid == 0) {
        // try gdb
        execlp("gdb", "gdb", "--batch",
            "-ex", "set style enabled on",
            "-ex", attach,
            "-ex", "bt -frame-info source-and-location",
            "-ex", "detach",
            "-ex", "quit",
            (char *) NULL);
        // try lldb
        execlp("lldb", "lldb", "--batch",
            "-o", "bt",
            "-o", "quit",
            "-p", attach,
            (char *) NULL);
        exit(EXIT_FAILURE);
    } else {
        int wstatus;
        waitpid(pid, &wstatus, 0);
        if (WIFEXITED(wstatus)) {
            if (WEXITSTATUS(wstatus) == EXIT_FAILURE) {
                // gdb failed, fallback to backtrace_symbols
                ggml_print_backtrace_symbols();
            }
        }
    }
}
#else
static void ggml_print_backtrace(void) {
    // platform not supported
}
#endif

void ggml_abort(const char * file, int line, const char * fmt, ...) {
    fflush(stdout);

    fprintf(stderr, "%s:%d: ", file, line);

    va_list args;
    va_start(args, fmt);
    vfprintf(stderr, fmt, args);
    va_end(args);

    fprintf(stderr, "\n");

    ggml_print_backtrace();
    abort();
}

//
// logging
//

213
214
215
216
217
struct ggml_logger_state {
    ggml_log_callback log_callback;
    void * log_callback_user_data;
};
static struct ggml_logger_state g_logger_state = {ggml_log_callback_default, NULL};
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
static void ggml_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
    if (format == NULL) {
        return;
    }
    va_list args_copy;
    va_copy(args_copy, args);
    char buffer[128];
    int len = vsnprintf(buffer, 128, format, args);
    if (len < 128) {
        g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
    } else {
        char * buffer2 = (char *) calloc(len + 1, sizeof(char));
        vsnprintf(buffer2, len + 1, format, args_copy);
        buffer2[len] = 0;
        g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
        free(buffer2);
    }
    va_end(args_copy);
}
238

239
240
241
242
243
244
void ggml_log_internal(enum ggml_log_level level, const char * format, ...) {
    va_list args;
    va_start(args, format);
    ggml_log_internal_v(level, format, args);
    va_end(args);
}
245

246
247
248
249
250
251
void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
    (void) level;
    (void) user_data;
    fputs(text, stderr);
    fflush(stderr);
}
252
253
254
255
256
257
258
259
260
261
262

//
// end of logging block
//

#ifdef GGML_USE_ACCELERATE
// uncomment to use vDSP for soft max computation
// note: not sure if it is actually faster
//#define GGML_SOFT_MAX_ACCELERATE
#endif

263
264
265
266

void * ggml_aligned_malloc(size_t size) {
    const int alignment = 64;

267
#if defined(_MSC_VER) || defined(__MINGW32__)
268
    return _aligned_malloc(size, alignment);
269
270
#else
    if (size == 0) {
271
        GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
272
273
274
        return NULL;
    }
    void * aligned_memory = NULL;
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
  #ifdef GGML_USE_CPU_HBM
    int result = hbw_posix_memalign(&aligned_memory, alignment, size);
  #elif TARGET_OS_OSX
    GGML_UNUSED(alignment);
    kern_return_t alloc_status = vm_allocate((vm_map_t) mach_task_self(), (vm_address_t *) &aligned_memory, size, VM_FLAGS_ANYWHERE);
    int result = EFAULT;
    switch (alloc_status) {
        case KERN_SUCCESS:
            result = 0;
            break;
        case KERN_INVALID_ADDRESS:
            result = EINVAL;
            break;
        case KERN_NO_SPACE:
            result = ENOMEM;
            break;
        default:
            result = EFAULT;
            break;
    }
  #else
    int result = posix_memalign(&aligned_memory, alignment, size);
  #endif
298
299
300
301
302
303
304
305
306
307
308
    if (result != 0) {
        // Handle allocation failure
        const char *error_desc = "unknown allocation error";
        switch (result) {
            case EINVAL:
                error_desc = "invalid alignment value";
                break;
            case ENOMEM:
                error_desc = "insufficient memory";
                break;
        }
309
        GGML_LOG_ERROR("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
310
311
312
        return NULL;
    }
    return aligned_memory;
313
#endif
314
}
315
316
317
318
319
320
321
322
323
324
325
326
327

void ggml_aligned_free(void * ptr, size_t size) {
    GGML_UNUSED(size);
#if defined(_MSC_VER) || defined(__MINGW32__)
    _aligned_free(ptr);
#elif GGML_USE_CPU_HBM
    if (ptr != NULL) {
        hbw_free(ptr);
    }
#elif TARGET_OS_OSX
    if (ptr != NULL) {
        vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ptr, size);
    }
328
#else
329
    free(ptr);
330
#endif
331
332
}

333
334
335

inline static void * ggml_malloc(size_t size) {
    if (size == 0) {
336
        GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
337
338
339
340
        return NULL;
    }
    void * result = malloc(size);
    if (result == NULL) {
341
        GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
342
343
344
345
346
347
348
349
        GGML_ABORT("fatal error");
    }
    return result;
}

// calloc
inline static void * ggml_calloc(size_t num, size_t size) {
    if (num == 0 || size == 0) {
350
        GGML_LOG_WARN("Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
351
352
353
354
        return NULL;
    }
    void * result = calloc(num, size);
    if (result == NULL) {
355
        GGML_LOG_ERROR("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
356
357
358
359
360
361
362
363
364
365
        GGML_ABORT("fatal error");
    }
    return result;
}

#define GGML_MALLOC(size)      ggml_malloc(size)
#define GGML_CALLOC(num, size) ggml_calloc(num, size)

#define GGML_FREE(ptr) free(ptr)

366
const char * ggml_status_to_string(enum ggml_status status) {
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    switch (status) {
        case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
        case GGML_STATUS_FAILED:       return "GGML status: error (operation failed)";
        case GGML_STATUS_SUCCESS:      return "GGML status: success";
        case GGML_STATUS_ABORTED:      return "GGML status: warning (operation aborted)";
    }

    return "GGML status: unknown";
}

float ggml_fp16_to_fp32(ggml_fp16_t x) {
#define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
    return GGML_FP16_TO_FP32(x);
}

ggml_fp16_t ggml_fp32_to_fp16(float x) {
#define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
    return GGML_FP32_TO_FP16(x);
}

float ggml_bf16_to_fp32(ggml_bf16_t x) {
#define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
    return GGML_BF16_TO_FP32(x);  // it just left shifts
}

ggml_bf16_t ggml_fp32_to_bf16(float x) {
#define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
    return GGML_FP32_TO_BF16(x);
}

void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
    for (int64_t i = 0; i < n; i++) {
        y[i] = GGML_FP16_TO_FP32(x[i]);
    }
}

403
404
// FIXME: these functions must detect the instruction set at runtime, since they are part of the core ggml library
//        currently, the ggml_cpu_has_* functions are entirely compile-time
405
406
407
void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
    int64_t i = 0;
#if defined(__F16C__)
408
409
410
411
412
413
414
415
416
417
418
419
    //if (ggml_cpu_has_f16c()) {
        for (; i + 7 < n; i += 8) {
            __m256 x_vec = _mm256_loadu_ps(x + i);
            __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
            _mm_storeu_si128((__m128i *)(y + i), y_vec);
        }
        for(; i + 3 < n; i += 4) {
            __m128 x_vec = _mm_loadu_ps(x + i);
            __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
            _mm_storel_epi64((__m128i *)(y + i), y_vec);
        }
    //}
420
421
422
423
424
425
426
427
428
#endif
    for (; i < n; i++) {
        y[i] = GGML_FP32_TO_FP16(x[i]);
    }
}

void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
    int64_t i = 0;
#if defined(__AVX512F__)
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    //if (ggml_cpu_has_avx512()) {
        for (; i + 16 <= n; i += 16) {
            _mm512_storeu_ps(y + i,
                            _mm512_castsi512_ps(
                                _mm512_slli_epi32(
                                    _mm512_cvtepu16_epi32(
                                        _mm256_loadu_si256(
                                            (const __m256i *)(x + i))),
                                    16)));
        }
    //}
#endif
#if defined(__AVX2__)
    //if (ggml_cpu_has_avx2()) {
        for (; i + 8 <= n; i += 8) {
            _mm256_storeu_ps(y + i,
                            _mm256_castsi256_ps(
                                _mm256_slli_epi32(
                                    _mm256_cvtepu16_epi32(
                                        _mm_loadu_si128(
                                            (const __m128i *)(x + i))),
                                    16)));
        }
    //}
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
#endif
    for (; i < n; i++) {
        y[i] = GGML_BF16_TO_FP32(x[i]);
    }
}

void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
    for (int i = 0; i < n; i++) {
        y[i] = ggml_compute_fp32_to_bf16(x[i]);
    }
}

void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  int i = 0;
#if defined(__AVX512BF16__)
  // subnormals are flushed to zero on this platform
  for (; i + 32 <= n; i += 32) {
        _mm512_storeu_si512(
            (__m512i *)(y + i),
            m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
                                _mm512_loadu_ps(x + i))));
  }
#endif
    for (; i < n; i++) {
        y[i] = GGML_FP32_TO_BF16(x[i]);
    }
}

bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
    return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
}

//
// timing
//

#if defined(_MSC_VER) || defined(__MINGW32__)
static int64_t timer_freq, timer_start;
void ggml_time_init(void) {
    LARGE_INTEGER t;
    QueryPerformanceFrequency(&t);
    timer_freq = t.QuadPart;

    // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
    // and the uptime is high enough.
    // We subtract the program start time to reduce the likelihood of that happening.
    QueryPerformanceCounter(&t);
    timer_start = t.QuadPart;
}
int64_t ggml_time_ms(void) {
    LARGE_INTEGER t;
    QueryPerformanceCounter(&t);
    return ((t.QuadPart-timer_start) * 1000) / timer_freq;
}
int64_t ggml_time_us(void) {
    LARGE_INTEGER t;
    QueryPerformanceCounter(&t);
    return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
}
#else
void ggml_time_init(void) {}
int64_t ggml_time_ms(void) {
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
}

int64_t ggml_time_us(void) {
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
}
#endif

int64_t ggml_cycles(void) {
    return clock();
}

int64_t ggml_cycles_per_ms(void) {
    return CLOCKS_PER_SEC/1000;
}

//
// cross-platform UTF-8 file paths
//

#ifdef _WIN32
static wchar_t * ggml_mbstowcs(const char * mbs) {
    int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
    if (!wlen) {
        errno = EINVAL;
        return NULL;
    }

    wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
    wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
    if (!wlen) {
        GGML_FREE(wbuf);
        errno = EINVAL;
        return NULL;
    }

    return wbuf;
}
#endif

FILE * ggml_fopen(const char * fname, const char * mode) {
#ifdef _WIN32
    FILE * file = NULL;

    // convert fname (UTF-8)
    wchar_t * wfname = ggml_mbstowcs(fname);
    if (wfname) {
        // convert mode (ANSI)
        wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
        wchar_t * wmode_p = wmode;
        do {
            *wmode_p++ = (wchar_t)*mode;
        } while (*mode++);

        // open file
        file = _wfopen(wfname, wmode);

        GGML_FREE(wfname);
        GGML_FREE(wmode);
    }

    return file;
#else
    return fopen(fname, mode);
#endif

585
}
586
587
588
589
static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);

590
static const struct ggml_type_traits type_traits[GGML_TYPE_COUNT] = {
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
    [GGML_TYPE_I8] = {
        .type_name                = "i8",
        .blck_size                = 1,
        .type_size                = sizeof(int8_t),
        .is_quantized             = false,
    },
    [GGML_TYPE_I16] = {
        .type_name                = "i16",
        .blck_size                = 1,
        .type_size                = sizeof(int16_t),
        .is_quantized             = false,
    },
    [GGML_TYPE_I32] = {
        .type_name                = "i32",
        .blck_size                = 1,
        .type_size                = sizeof(int32_t),
        .is_quantized             = false,
    },
    [GGML_TYPE_I64] = {
        .type_name                = "i64",
        .blck_size                = 1,
        .type_size                = sizeof(int64_t),
        .is_quantized             = false,
    },
    [GGML_TYPE_F64] = {
        .type_name                = "f64",
        .blck_size                = 1,
        .type_size                = sizeof(double),
        .is_quantized             = false,
    },
    [GGML_TYPE_F32] = {
        .type_name                = "f32",
        .blck_size                = 1,
        .type_size                = sizeof(float),
        .is_quantized             = false,
    },
    [GGML_TYPE_F16] = {
        .type_name                = "f16",
        .blck_size                = 1,
        .type_size                = sizeof(ggml_fp16_t),
        .is_quantized             = false,
        .to_float                 = (ggml_to_float_t) ggml_fp16_to_fp32_row,
        .from_float_ref           = (ggml_from_float_t) ggml_fp32_to_fp16_row,
    },
    [GGML_TYPE_Q4_0] = {
        .type_name                = "q4_0",
        .blck_size                = QK4_0,
        .type_size                = sizeof(block_q4_0),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_q4_0,
        .from_float_ref           = (ggml_from_float_t) quantize_row_q4_0_ref,
    },
    [GGML_TYPE_Q4_1] = {
        .type_name                = "q4_1",
        .blck_size                = QK4_1,
        .type_size                = sizeof(block_q4_1),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_q4_1,
        .from_float_ref           = (ggml_from_float_t) quantize_row_q4_1_ref,
    },
    [4] = { // GGML_TYPE_Q4_2
        .type_name                = "DEPRECATED",
        .blck_size                = 0,
        .type_size                = 0,
        .is_quantized             = false,
    },
    [5] = { // GGML_TYPE_Q4_3
        .type_name                = "DEPRECATED",
        .blck_size                = 0,
        .type_size                = 0,
        .is_quantized             = false,
    },
    [GGML_TYPE_Q5_0] = {
        .type_name                = "q5_0",
        .blck_size                = QK5_0,
        .type_size                = sizeof(block_q5_0),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_q5_0,
        .from_float_ref           = (ggml_from_float_t) quantize_row_q5_0_ref,
    },
    [GGML_TYPE_Q5_1] = {
        .type_name                = "q5_1",
        .blck_size                = QK5_1,
        .type_size                = sizeof(block_q5_1),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_q5_1,
        .from_float_ref           = (ggml_from_float_t) quantize_row_q5_1_ref,
    },
    [GGML_TYPE_Q8_0] = {
        .type_name                = "q8_0",
        .blck_size                = QK8_0,
        .type_size                = sizeof(block_q8_0),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_q8_0,
        .from_float_ref           = (ggml_from_float_t) quantize_row_q8_0_ref,
    },
    [GGML_TYPE_Q8_1] = {
        .type_name                = "q8_1",
        .blck_size                = QK8_1,
        .type_size                = sizeof(block_q8_1),
        .is_quantized             = true,
        .from_float_ref           = (ggml_from_float_t) quantize_row_q8_1_ref,
    },
    [GGML_TYPE_Q2_K] = {
        .type_name                = "q2_K",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_q2_K),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_q2_K,
        .from_float_ref           = (ggml_from_float_t) quantize_row_q2_K_ref,
    },
    [GGML_TYPE_Q3_K] = {
        .type_name                = "q3_K",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_q3_K),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_q3_K,
        .from_float_ref           = (ggml_from_float_t) quantize_row_q3_K_ref,
    },
    [GGML_TYPE_Q4_K] = {
        .type_name                = "q4_K",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_q4_K),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_q4_K,
        .from_float_ref           = (ggml_from_float_t) quantize_row_q4_K_ref,
    },
    [GGML_TYPE_Q5_K] = {
        .type_name                = "q5_K",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_q5_K),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_q5_K,
        .from_float_ref           = (ggml_from_float_t) quantize_row_q5_K_ref,
    },
    [GGML_TYPE_Q6_K] = {
        .type_name                = "q6_K",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_q6_K),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_q6_K,
        .from_float_ref           = (ggml_from_float_t) quantize_row_q6_K_ref,
    },
    [GGML_TYPE_IQ2_XXS] = {
        .type_name                = "iq2_xxs",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_iq2_xxs),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_iq2_xxs,
        .from_float_ref           = NULL,
    },
    [GGML_TYPE_IQ2_XS] = {
        .type_name                = "iq2_xs",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_iq2_xs),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_iq2_xs,
        .from_float_ref           = NULL,
    },
    [GGML_TYPE_IQ3_XXS] = {
        .type_name                = "iq3_xxs",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_iq3_xxs),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_iq3_xxs,
        .from_float_ref           = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
    },
    [GGML_TYPE_IQ3_S] = {
        .type_name                = "iq3_s",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_iq3_s),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_iq3_s,
        .from_float_ref           = (ggml_from_float_t)quantize_row_iq3_s_ref,
    },
    [GGML_TYPE_IQ2_S] = {
        .type_name                = "iq2_s",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_iq2_s),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_iq2_s,
        .from_float_ref           = (ggml_from_float_t)quantize_row_iq2_s_ref,
    },
    [GGML_TYPE_IQ1_S] = {
        .type_name                = "iq1_s",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_iq1_s),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_iq1_s,
        .from_float_ref           = NULL,
    },
    [GGML_TYPE_IQ1_M] = {
        .type_name                = "iq1_m",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_iq1_m),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_iq1_m,
        .from_float_ref           = NULL,
    },
    [GGML_TYPE_IQ4_NL] = {
        .type_name                = "iq4_nl",
        .blck_size                = QK4_NL,
        .type_size                = sizeof(block_iq4_nl),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_iq4_nl,
        .from_float_ref           = (ggml_from_float_t)quantize_row_iq4_nl_ref,
    },
    [GGML_TYPE_IQ4_XS] = {
        .type_name                = "iq4_xs",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_iq4_xs),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_iq4_xs,
        .from_float_ref           = (ggml_from_float_t)quantize_row_iq4_xs_ref,
    },
    [GGML_TYPE_Q8_K] = {
        .type_name                = "q8_K",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_q8_K),
        .is_quantized             = true,
    },
    [GGML_TYPE_BF16] = {
        .type_name                = "bf16",
        .blck_size                = 1,
        .type_size                = sizeof(ggml_bf16_t),
        .is_quantized             = false,
        .to_float                 = (ggml_to_float_t) ggml_bf16_to_fp32_row,
        .from_float_ref           = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
    },
820
821
822
823
824
    [31] = { // GGML_TYPE_Q4_0_4_4
        .type_name                = "TYPE_Q4_0_4_4 REMOVED, use Q4_0 with runtime repacking",
        .blck_size                = 0,
        .type_size                = 0,
        .is_quantized             = false,
825
    },
826
827
828
829
830
    [32] = { // GGML_TYPE_Q4_0_4_8
        .type_name                = "TYPE_Q4_0_4_8 REMOVED, use Q4_0 with runtime repacking",
        .blck_size                = 0,
        .type_size                = 0,
        .is_quantized             = false,
831
    },
832
833
834
835
836
    [33] = { // GGML_TYPE_Q4_0_8_8
        .type_name                = "TYPE_Q4_0_8_8 REMOVED, use Q4_0 with runtime repacking",
        .blck_size                = 0,
        .type_size                = 0,
        .is_quantized             = false,
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
    },
    [GGML_TYPE_TQ1_0] = {
        .type_name                = "tq1_0",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_tq1_0),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_tq1_0,
        .from_float_ref           = (ggml_from_float_t) quantize_row_tq1_0_ref,
    },
    [GGML_TYPE_TQ2_0] = {
        .type_name                = "tq2_0",
        .blck_size                = QK_K,
        .type_size                = sizeof(block_tq2_0),
        .is_quantized             = true,
        .to_float                 = (ggml_to_float_t) dequantize_row_tq2_0,
        .from_float_ref           = (ggml_from_float_t) quantize_row_tq2_0_ref,
853
    },
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
    [36] = { // GGML_TYPE_IQ4_NL_4_4
        .type_name                = "TYPE_IQ4_NL_4_4 REMOVED, use IQ4_NL with runtime repacking",
        .blck_size                = 0,
        .type_size                = 0,
        .is_quantized             = false,
    },
    [37] = { // GGML_TYPE_IQ4_NL_4_8
        .type_name                = "TYPE_IQ4_NL_4_8 REMOVED, use IQ4_NL with runtime repacking",
        .blck_size                = 0,
        .type_size                = 0,
        .is_quantized             = false,
    },
    [38] = { // GGML_TYPE_IQ4_NL_8_8
        .type_name                = "TYPE_IQ4_NL_8_8 REMOVED, use IQ4_NL with runtime repacking",
        .blck_size                = 0,
        .type_size                = 0,
        .is_quantized             = false,
871
    },
872
873
};

874
const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type) {
875
    GGML_ASSERT(type < GGML_TYPE_COUNT);
876
    return &type_traits[type];
877
878
}

879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
//
// ggml object
//

struct ggml_object {
    size_t offs;
    size_t size;

    struct ggml_object * next;

    enum ggml_object_type type;

    char padding[4];
};

static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);

896
897
898
899
900
901
//
// ggml context
//

struct ggml_context {
    size_t mem_size;
902
    void * mem_buffer;
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
    bool   mem_buffer_owned;
    bool   no_alloc;

    int    n_objects;

    struct ggml_object * objects_begin;
    struct ggml_object * objects_end;
};

struct ggml_context_container {
    bool used;

    struct ggml_context context;
};

//
919
// data types
920
921
//

922
923
static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
    "NONE",
924

925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
    "DUP",
    "ADD",
    "ADD1",
    "ACC",
    "SUB",
    "MUL",
    "DIV",
    "SQR",
    "SQRT",
    "LOG",
    "SIN",
    "COS",
    "SUM",
    "SUM_ROWS",
    "MEAN",
    "ARGMAX",
    "COUNT_EQUAL",
    "REPEAT",
    "REPEAT_BACK",
    "CONCAT",
    "SILU_BACK",
    "NORM",
    "RMS_NORM",
    "RMS_NORM_BACK",
    "GROUP_NORM",
950

951
952
953
    "MUL_MAT",
    "MUL_MAT_ID",
    "OUT_PROD",
954

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
    "SCALE",
    "SET",
    "CPY",
    "CONT",
    "RESHAPE",
    "VIEW",
    "PERMUTE",
    "TRANSPOSE",
    "GET_ROWS",
    "GET_ROWS_BACK",
    "DIAG",
    "DIAG_MASK_INF",
    "DIAG_MASK_ZERO",
    "SOFT_MAX",
    "SOFT_MAX_BACK",
    "ROPE",
    "ROPE_BACK",
    "CLAMP",
    "CONV_TRANSPOSE_1D",
    "IM2COL",
    "IM2COL_BACK",
    "CONV_TRANSPOSE_2D",
    "POOL_1D",
    "POOL_2D",
    "POOL_2D_BACK",
    "UPSCALE",
    "PAD",
982
    "PAD_REFLECT_1D",
983
984
985
986
987
    "UNPAD",
    "ARANGE",
    "TIMESTEP_EMBEDDING",
    "ARGSORT",
    "LEAKY_RELU",
988

989
990
991
992
993
994
995
996
997
    "FLASH_ATTN_EXT",
    "FLASH_ATTN_BACK",
    "SSM_CONV",
    "SSM_SCAN",
    "WIN_PART",
    "WIN_UNPART",
    "GET_REL_POS",
    "ADD_REL_POS",
    "RWKV_WKV6",
998

999
    "UNARY",
1000

1001
1002
    "MAP_UNARY",
    "MAP_BINARY",
1003

1004
1005
1006
    "MAP_CUSTOM1_F32",
    "MAP_CUSTOM2_F32",
    "MAP_CUSTOM3_F32",
1007

1008
1009
1010
    "MAP_CUSTOM1",
    "MAP_CUSTOM2",
    "MAP_CUSTOM3",
1011

1012
1013
1014
1015
    "CROSS_ENTROPY_LOSS",
    "CROSS_ENTROPY_LOSS_BACK",
    "OPT_STEP_ADAMW",
};
1016

1017
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
1018

1019
1020
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
    "none",
1021

1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
    "x",
    "x+y",
    "x+y",
    "view(x,nb,offset)+=y->x",
    "x-y",
    "x*y",
    "x/y",
    "x^2",
    "√x",
    "log(x)",
    "sin(x)",
    "cos(x)",
    "Σx",
    "Σx_k",
    "Σx/n",
    "argmax(x)",
    "count_equal(x)",
    "repeat(x)",
    "repeat_back(x)",
    "concat(x, y)",
    "silu_back(x)",
    "norm(x)",
    "rms_norm(x)",
    "rms_norm_back(x)",
    "group_norm(x)",
1047

1048
1049
1050
    "X*Y",
    "X[i]*Y",
    "X*Y",
1051

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
    "x*v",
    "y-\\>view(x)",
    "x-\\>y",
    "cont(x)",
    "reshape(x)",
    "view(x)",
    "permute(x)",
    "transpose(x)",
    "get_rows(x)",
    "get_rows_back(x)",
    "diag(x)",
    "diag_mask_inf(x)",
    "diag_mask_zero(x)",
    "soft_max(x)",
    "soft_max_back(x)",
    "rope(x)",
    "rope_back(x)",
    "clamp(x)",
    "conv_transpose_1d(x)",
    "im2col(x)",
    "im2col_back(x)",
    "conv_transpose_2d(x)",
    "pool_1d(x)",
    "pool_2d(x)",
    "pool_2d_back(x)",
    "upscale(x)",
    "pad(x)",
1079
    "pad_reflect_1d(x)",
1080
1081
1082
1083
1084
    "unpad(x)",
    "arange(start, stop, step)",
    "timestep_embedding(timesteps, dim, max_period)",
    "argsort(x)",
    "leaky_relu(x)",
1085

1086
1087
1088
1089
1090
1091
1092
1093
1094
    "flash_attn_ext(x)",
    "flash_attn_back(x)",
    "ssm_conv(x)",
    "ssm_scan(x)",
    "win_part(x)",
    "win_unpart(x)",
    "get_rel_pos(x)",
    "add_rel_pos(x)",
    "rwkv_wkv6(k, v, r, tf, td, s)",
1095

1096
    "unary(x)",
1097

1098
1099
    "f(x)",
    "f(x,y)",
1100

1101
1102
1103
    "custom_f32(x)",
    "custom_f32(x,y)",
    "custom_f32(x,y,z)",
1104

1105
1106
1107
    "custom(x)",
    "custom(x,y)",
    "custom(x,y,z)",
1108

1109
1110
1111
1112
    "cross_entropy_loss(x,y)",
    "cross_entropy_loss_back(x,y)",
    "adamw(x)",
};
1113

1114
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
1115

1116
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
1117
1118


1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
    "ABS",
    "SGN",
    "NEG",
    "STEP",
    "TANH",
    "ELU",
    "RELU",
    "SIGMOID",
    "GELU",
    "GELU_QUICK",
    "SILU",
    "HARDSWISH",
    "HARDSIGMOID",
    "EXP",
};
1135

1136
static_assert(GGML_UNARY_OP_COUNT == 14, "GGML_UNARY_OP_COUNT != 14");
1137
1138


1139
1140
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
1141
1142


1143
////////////////////////////////////////////////////////////////////////////////
1144

1145
1146
1147
void ggml_print_object(const struct ggml_object * obj) {
    GGML_LOG_INFO(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
            obj->type, obj->offs, obj->size, (const void *) obj->next);
1148
1149
}

1150
1151
void ggml_print_objects(const struct ggml_context * ctx) {
    struct ggml_object * obj = ctx->objects_begin;
1152

1153
    GGML_LOG_INFO("%s: objects in context %p:\n", __func__, (const void *) ctx);
1154

1155
1156
1157
    while (obj != NULL) {
        ggml_print_object(obj);
        obj = obj->next;
1158
1159
    }

1160
1161
    GGML_LOG_INFO("%s: --- end ---\n", __func__);
}
1162

1163
1164
int64_t ggml_nelements(const struct ggml_tensor * tensor) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
1165

1166
1167
    return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
1168

1169
1170
int64_t ggml_nrows(const struct ggml_tensor * tensor) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
1171

1172
1173
    return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
1174

1175
1176
1177
1178
1179
1180
1181
size_t ggml_nbytes(const struct ggml_tensor * tensor) {
    size_t nbytes;
    const size_t blck_size = ggml_blck_size(tensor->type);
    if (blck_size == 1) {
        nbytes = ggml_type_size(tensor->type);
        for (int i = 0; i < GGML_MAX_DIMS; ++i) {
            nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
1182
1183
        }
    }
1184
1185
1186
1187
    else {
        nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
        for (int i = 1; i < GGML_MAX_DIMS; ++i) {
            nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
1188
1189
1190
        }
    }

1191
    return nbytes;
1192
1193
}

1194
1195
1196
size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
    return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
}
1197

1198
1199
1200
int64_t ggml_blck_size(enum ggml_type type) {
    return type_traits[type].blck_size;
}
1201

1202
1203
1204
size_t ggml_type_size(enum ggml_type type) {
    return type_traits[type].type_size;
}
1205

1206
1207
1208
1209
size_t ggml_row_size(enum ggml_type type, int64_t ne) {
    assert(ne % ggml_blck_size(type) == 0);
    return ggml_type_size(type)*ne/ggml_blck_size(type);
}
1210

1211
1212
1213
double ggml_type_sizef(enum ggml_type type) {
    return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
}
1214

1215
1216
const char * ggml_type_name(enum ggml_type type) {
    return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE";
1217
1218
}

1219
1220
1221
bool ggml_is_quantized(enum ggml_type type) {
    return type_traits[type].is_quantized;
}
1222

1223
1224
1225
const char * ggml_op_name(enum ggml_op op) {
    return GGML_OP_NAME[op];
}
1226

1227
1228
1229
const char * ggml_op_symbol(enum ggml_op op) {
    return GGML_OP_SYMBOL[op];
}
1230

1231
1232
1233
const char * ggml_unary_op_name(enum ggml_unary_op op) {
    return GGML_UNARY_OP_NAME[op];
}
1234

1235
1236
1237
1238
const char * ggml_op_desc(const struct ggml_tensor * t) {
    if (t->op == GGML_OP_UNARY) {
        enum ggml_unary_op uop = ggml_get_unary_op(t);
        return ggml_unary_op_name(uop);
1239
    }
1240
1241
    return ggml_op_name(t->op);
}
1242

1243
1244
size_t ggml_element_size(const struct ggml_tensor * tensor) {
    return ggml_type_size(tensor->type);
1245
1246
}

1247
1248
bool ggml_is_scalar(const struct ggml_tensor * tensor) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
1249

1250
1251
    return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
1252

1253
1254
bool ggml_is_vector(const struct ggml_tensor * tensor) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
1255

1256
1257
    return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
1258

1259
1260
bool ggml_is_matrix(const struct ggml_tensor * tensor) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
1261

1262
1263
    return tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
1264

1265
1266
1267
bool ggml_is_3d(const struct ggml_tensor * tensor) {
    return tensor->ne[3] == 1;
}
1268

1269
1270
1271
1272
int ggml_n_dims(const struct ggml_tensor * tensor) {
    for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
        if (tensor->ne[i] > 1) {
            return i + 1;
1273
1274
        }
    }
1275
    return 1;
1276
1277
}

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
    enum ggml_type wtype = GGML_TYPE_COUNT;

    switch (ftype) {
        case GGML_FTYPE_ALL_F32:              wtype = GGML_TYPE_F32;   break;
        case GGML_FTYPE_MOSTLY_F16:           wtype = GGML_TYPE_F16;   break;
        case GGML_FTYPE_MOSTLY_BF16:          wtype = GGML_TYPE_BF16;  break;
        case GGML_FTYPE_MOSTLY_Q4_0:          wtype = GGML_TYPE_Q4_0;  break;
        case GGML_FTYPE_MOSTLY_Q4_1:          wtype = GGML_TYPE_Q4_1;  break;
        case GGML_FTYPE_MOSTLY_Q5_0:          wtype = GGML_TYPE_Q5_0;  break;
        case GGML_FTYPE_MOSTLY_Q5_1:          wtype = GGML_TYPE_Q5_1;  break;
        case GGML_FTYPE_MOSTLY_Q8_0:          wtype = GGML_TYPE_Q8_0;  break;
        case GGML_FTYPE_MOSTLY_Q2_K:          wtype = GGML_TYPE_Q2_K;  break;
        case GGML_FTYPE_MOSTLY_Q3_K:          wtype = GGML_TYPE_Q3_K;  break;
        case GGML_FTYPE_MOSTLY_Q4_K:          wtype = GGML_TYPE_Q4_K;  break;
        case GGML_FTYPE_MOSTLY_Q5_K:          wtype = GGML_TYPE_Q5_K;  break;
        case GGML_FTYPE_MOSTLY_Q6_K:          wtype = GGML_TYPE_Q6_K;  break;
        case GGML_FTYPE_MOSTLY_IQ2_XXS:       wtype = GGML_TYPE_IQ2_XXS;  break;
        case GGML_FTYPE_MOSTLY_IQ2_XS:        wtype = GGML_TYPE_IQ2_XS;   break;
        case GGML_FTYPE_MOSTLY_IQ3_XXS:       wtype = GGML_TYPE_IQ3_XXS;  break;
        case GGML_FTYPE_MOSTLY_IQ1_S:         wtype = GGML_TYPE_IQ1_S;    break;
        case GGML_FTYPE_MOSTLY_IQ1_M:         wtype = GGML_TYPE_IQ1_M;    break;
        case GGML_FTYPE_MOSTLY_IQ4_NL:        wtype = GGML_TYPE_IQ4_NL;   break;
        case GGML_FTYPE_MOSTLY_IQ4_XS:        wtype = GGML_TYPE_IQ4_XS;   break;
        case GGML_FTYPE_MOSTLY_IQ3_S:         wtype = GGML_TYPE_IQ3_S;    break;
        case GGML_FTYPE_MOSTLY_IQ2_S:         wtype = GGML_TYPE_IQ2_S;    break;
        case GGML_FTYPE_UNKNOWN:              wtype = GGML_TYPE_COUNT; break;
        case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
    }
1307

1308
    GGML_ASSERT(wtype != GGML_TYPE_COUNT);
1309

1310
1311
    return wtype;
}
1312

1313
1314
1315
size_t ggml_tensor_overhead(void) {
    return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
}
1316

1317
1318
1319
bool ggml_is_transposed(const struct ggml_tensor * tensor) {
    return tensor->nb[0] > tensor->nb[1];
}
1320

1321
1322
1323
1324
static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
    size_t next_nb = ggml_type_size(tensor->type);
    if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
        return false;
1325
    }
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
    next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
    for (int i = 1; i < GGML_MAX_DIMS; i++) {
        if (tensor->ne[i] != 1) {
            if (i > n) {
                if (tensor->nb[i] != next_nb) {
                    return false;
                }
                next_nb *= tensor->ne[i];
            } else {
                // this dimension does not need to be contiguous
                next_nb = tensor->ne[i]*tensor->nb[i];
            }
        }
1339
    }
1340
    return true;
1341
1342
}

1343
1344
1345
bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
    return ggml_is_contiguous_0(tensor);
}
1346

1347
1348
1349
bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
    return ggml_is_contiguous_n(tensor, 0);
}
1350

1351
1352
1353
bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
    return ggml_is_contiguous_n(tensor, 1);
}
1354

1355
1356
1357
bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
    return ggml_is_contiguous_n(tensor, 2);
}
1358

1359
1360
bool ggml_is_permuted(const struct ggml_tensor * tensor) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
1361

1362
    return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
1363
1364
}

1365
1366
1367
1368
1369
1370
1371
static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");

    return
        tensor->nb[0] == ggml_type_size(tensor->type) &&
        tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
        tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
1372
1373
}

1374
1375
1376
1377
1378
bool ggml_is_empty(const struct ggml_tensor * tensor) {
    for (int i = 0; i < GGML_MAX_DIMS; ++i) {
        if (tensor->ne[i] == 0) {
            // empty if any dimension has no elements
            return true;
1379
1380
        }
    }
1381
    return false;
1382
1383
}

1384
1385
1386
1387
1388
1389
1390
1391
bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");

    return
        (t0->ne[0] == t1->ne[0]) &&
        (t0->ne[1] == t1->ne[1]) &&
        (t0->ne[2] == t1->ne[2]) &&
        (t0->ne[3] == t1->ne[3]);
1392
1393
}

1394
1395
bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
1396

1397
1398
1399
1400
1401
    return
        (t0->nb[0] == t1->nb[0]) &&
        (t0->nb[1] == t1->nb[1]) &&
        (t0->nb[2] == t1->nb[2]) &&
        (t0->nb[3] == t1->nb[3]);
1402
}
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412

// check if t1 can be represented as a repeatition of t0
bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");

    return ggml_is_empty(t0) ? ggml_is_empty(t1) :
        (t1->ne[0]%t0->ne[0] == 0) &&
        (t1->ne[1]%t0->ne[1] == 0) &&
        (t1->ne[2]%t0->ne[2] == 0) &&
        (t1->ne[3]%t0->ne[3] == 0);
1413
1414
}

1415
1416
1417
1418
static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");

    return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
1419
1420
}

1421
1422
1423
// assert that pointer is aligned to GGML_MEM_ALIGN
#define GGML_ASSERT_ALIGNED(ptr) \
    GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
1424

1425
////////////////////////////////////////////////////////////////////////////////
1426

1427
1428
struct ggml_context * ggml_init(struct ggml_init_params params) {
    static bool is_first_call = true;
1429

1430
1431
1432
1433
1434
    ggml_critical_section_start();

    if (is_first_call) {
        // initialize time system (required on Windows)
        ggml_time_init();
1435

1436
1437
1438
1439
1440
1441
1442
        for (int i = 0; i < (1 << 16); ++i) {
            union {
                uint16_t u16;
                ggml_fp16_t fp16;
            } u = {i};
            ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
        }
1443

1444
        is_first_call = false;
1445
1446
    }

1447
1448
1449
    ggml_critical_section_end();

    struct ggml_context * ctx = GGML_MALLOC(sizeof(struct ggml_context));
1450

1451
1452
1453
    // allow to call ggml_init with 0 size
    if (params.mem_size == 0) {
        params.mem_size = GGML_MEM_ALIGN;
1454
    }
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474

    const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);

    *ctx = (struct ggml_context) {
        /*.mem_size           =*/ mem_size,
        /*.mem_buffer         =*/ params.mem_buffer ? params.mem_buffer : ggml_aligned_malloc(mem_size),
        /*.mem_buffer_owned   =*/ params.mem_buffer ? false : true,
        /*.no_alloc           =*/ params.no_alloc,
        /*.n_objects          =*/ 0,
        /*.objects_begin      =*/ NULL,
        /*.objects_end        =*/ NULL,
    };

    GGML_ASSERT(ctx->mem_buffer != NULL);

    GGML_ASSERT_ALIGNED(ctx->mem_buffer);

    GGML_PRINT_DEBUG("%s: context initialized\n", __func__);

    return ctx;
1475
1476
}

1477
1478
1479
void ggml_reset(struct ggml_context * ctx) {
    if (ctx == NULL) {
        return;
1480
    }
1481
1482
1483
1484

    ctx->n_objects     = 0;
    ctx->objects_begin = NULL;
    ctx->objects_end   = NULL;
1485
1486
}

1487
1488
1489
void ggml_free(struct ggml_context * ctx) {
    if (ctx == NULL) {
        return;
1490
1491
    }

1492
1493
    if (ctx->mem_buffer_owned) {
        ggml_aligned_free(ctx->mem_buffer, ctx->mem_size);
1494
    }
1495
1496

    GGML_FREE(ctx);
1497
1498
}

1499
1500
size_t ggml_used_mem(const struct ggml_context * ctx) {
    return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
1501
1502
}

1503
1504
bool ggml_get_no_alloc(struct ggml_context * ctx) {
    return ctx->no_alloc;
1505
1506
}

1507
1508
void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
    ctx->no_alloc = no_alloc;
1509
1510
}

1511
1512
void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
    return ctx->mem_buffer;
1513
1514
}

1515
1516
1517
size_t ggml_get_mem_size(const struct ggml_context * ctx) {
    return ctx->mem_size;
}
1518

1519
1520
size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
    size_t max_size = 0;
1521

1522
1523
1524
1525
    for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
        size_t bytes = ggml_nbytes(tensor);
        max_size = MAX(max_size, bytes);
    }
1526

1527
1528
    return max_size;
}
1529

1530
////////////////////////////////////////////////////////////////////////////////
1531

1532
1533
1534
static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
    // always insert objects at the end of the context's memory pool
    struct ggml_object * obj_cur = ctx->objects_end;
1535

1536
1537
1538
    const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
    const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
    const size_t cur_end  = cur_offs + cur_size;
1539

1540
1541
    // align to GGML_MEM_ALIGN
    size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
1542

1543
1544
    char * const mem_buffer = ctx->mem_buffer;
    struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
1545

1546
1547
1548
1549
1550
1551
1552
1553
    if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
        GGML_LOG_WARN("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
                __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
#ifndef NDEBUG
        GGML_ABORT("not enough space in the context's memory pool");
#endif
        return NULL;
    }
1554

1555
1556
1557
1558
1559
1560
    *obj_new = (struct ggml_object) {
        .offs = cur_end + GGML_OBJECT_SIZE,
        .size = size_needed,
        .next = NULL,
        .type = type,
    };
1561

1562
    GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs);
1563

1564
1565
1566
1567
1568
1569
    if (obj_cur != NULL) {
        obj_cur->next = obj_new;
    } else {
        // this is the first object in this context
        ctx->objects_begin = obj_new;
    }
1570

1571
    ctx->objects_end = obj_new;
1572

1573
    //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
1574

1575
1576
    return obj_new;
}
1577

1578
1579
1580
1581
1582
1583
1584
static struct ggml_tensor * ggml_new_tensor_impl(
        struct ggml_context * ctx,
        enum   ggml_type      type,
        int                   n_dims,
        const int64_t       * ne,
        struct ggml_tensor  * view_src,
        size_t                view_offs) {
1585

1586
1587
    GGML_ASSERT(type >= 0 && type < GGML_TYPE_COUNT);
    GGML_ASSERT(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
1588

1589
1590
1591
1592
1593
    // find the base tensor and absolute offset
    if (view_src != NULL && view_src->view_src != NULL) {
        view_offs += view_src->view_offs;
        view_src   = view_src->view_src;
    }
1594

1595
1596
1597
1598
    size_t data_size = ggml_row_size(type, ne[0]);
    for (int i = 1; i < n_dims; i++) {
        data_size *= ne[i];
    }
1599

1600
    GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
1601

1602
1603
1604
1605
    void * data = view_src != NULL ? view_src->data : NULL;
    if (data != NULL) {
        data = (char *) data + view_offs;
    }
1606

1607
    size_t obj_alloc_size = 0;
1608

1609
1610
1611
1612
    if (view_src == NULL && !ctx->no_alloc) {
        // allocate tensor data in the context's memory pool
        obj_alloc_size = data_size;
    }
1613

1614
1615
    struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
    GGML_ASSERT(obj_new);
1616

1617
    struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
1618

1619
1620
1621
1622
1623
#ifdef __clang__
    // temporary until ggml_tensor::backend is removed
    #pragma clang diagnostic push
    #pragma clang diagnostic ignored "-Wdeprecated-declarations"
#endif
1624

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
    *result = (struct ggml_tensor) {
        /*.type         =*/ type,
        /*.backend      =*/ GGML_BACKEND_TYPE_CPU,
        /*.buffer       =*/ NULL,
        /*.ne           =*/ { 1, 1, 1, 1 },
        /*.nb           =*/ { 0, 0, 0, 0 },
        /*.op           =*/ GGML_OP_NONE,
        /*.op_params    =*/ { 0 },
        /*.flags        =*/ 0,
        /*.src          =*/ { NULL },
        /*.view_src     =*/ view_src,
        /*.view_offs    =*/ view_offs,
        /*.data         =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
        /*.name         =*/ { 0 },
        /*.extra        =*/ NULL,
        /*.padding      =*/ { 0 },
    };
1642

1643
1644
#ifdef __clang__
    #pragma clang diagnostic pop
1645
1646
#endif

1647
1648
    // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
    //GGML_ASSERT_ALIGNED(result->data);
1649

1650
1651
    for (int i = 0; i < n_dims; i++) {
        result->ne[i] = ne[i];
1652
1653
    }

1654
1655
1656
1657
    result->nb[0] = ggml_type_size(type);
    result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
    for (int i = 2; i < GGML_MAX_DIMS; i++) {
        result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
1658
1659
    }

1660
    ctx->n_objects++;
1661

1662
1663
    return result;
}
1664

1665
1666
1667
1668
1669
1670
struct ggml_tensor * ggml_new_tensor(
        struct ggml_context * ctx,
        enum   ggml_type      type,
        int                   n_dims,
        const int64_t       * ne) {
    return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
1671
}
1672

1673
1674
1675
1676
1677
struct ggml_tensor * ggml_new_tensor_1d(
        struct ggml_context * ctx,
        enum   ggml_type      type,
        int64_t ne0) {
    return ggml_new_tensor(ctx, type, 1, &ne0);
1678
1679
}

1680
1681
1682
1683
1684
1685
1686
struct ggml_tensor * ggml_new_tensor_2d(
        struct ggml_context * ctx,
        enum   ggml_type      type,
        int64_t ne0,
        int64_t ne1) {
    const int64_t ne[2] = { ne0, ne1 };
    return ggml_new_tensor(ctx, type, 2, ne);
1687
}
1688
1689
1690
1691
1692
1693
1694
1695
1696

struct ggml_tensor * ggml_new_tensor_3d(
        struct ggml_context * ctx,
        enum   ggml_type      type,
        int64_t ne0,
        int64_t ne1,
        int64_t ne2) {
    const int64_t ne[3] = { ne0, ne1, ne2 };
    return ggml_new_tensor(ctx, type, 3, ne);
1697
1698
}

1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
struct ggml_tensor * ggml_new_tensor_4d(
        struct ggml_context * ctx,
        enum   ggml_type type,
        int64_t ne0,
        int64_t ne1,
        int64_t ne2,
        int64_t ne3) {
    const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
    return ggml_new_tensor(ctx, type, 4, ne);
}
1709

1710
1711
void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes) {
    struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, nbytes);
1712

1713
1714
    return (uint8_t *)ctx->mem_buffer + obj->offs;
}
1715

1716
1717
1718
struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
    return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
}
1719

1720
1721
1722
1723
void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
    const int64_t ne2 = tensor->ne[2];
    const int64_t ne1 = tensor->ne[1];
    const int64_t ne0 = tensor->ne[0];
1724

1725
1726
1727
1728
    const int64_t i3_ = (i/(ne2*ne1*ne0));
    const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
    const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
    const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
1729

1730
1731
    if (i0) {
        * i0 = i0_;
1732
    }
1733
1734
1735
1736
1737
1738
1739
1740
    if (i1) {
        * i1 = i1_;
    }
    if (i2) {
        * i2 = i2_;
    }
    if (i3) {
        * i3 = i3_;
1741
    }
1742
}
1743

1744
1745
1746
void * ggml_get_data(const struct ggml_tensor * tensor) {
    return tensor->data;
}
1747

1748
1749
1750
1751
float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
    assert(tensor->type == GGML_TYPE_F32);
    return (float *)(tensor->data);
}
1752

1753
1754
1755
1756
enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
    GGML_ASSERT(tensor->op == GGML_OP_UNARY);
    return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
}
1757

1758
1759
1760
const char * ggml_get_name(const struct ggml_tensor * tensor) {
    return tensor->name;
}
1761

1762
1763
1764
1765
struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
    size_t i;
    for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) {
        tensor->name[i] = name[i];
1766
    }
1767
1768
    tensor->name[i] = '\0';
    return tensor;
1769
1770
}

1771
1772
1773
1774
1775
1776
struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
    va_list args;
    va_start(args, fmt);
    vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
    va_end(args);
    return tensor;
1777
1778
}

1779
1780
1781
1782
1783
struct ggml_tensor * ggml_view_tensor(
        struct ggml_context * ctx,
        struct ggml_tensor  * src) {
    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
    ggml_format_name(result, "%s (view)", src->name);
1784

1785
1786
1787
1788
1789
    for (int i = 0; i < GGML_MAX_DIMS; i++) {
        result->nb[i] = src->nb[i];
    }

    return result;
1790
1791
}

1792
struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
1793
1794
    struct ggml_object * obj = ctx->objects_begin;

1795
    char * const mem_buffer = ctx->mem_buffer;
1796
1797

    while (obj != NULL) {
1798
1799
1800
1801
        if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
            return (struct ggml_tensor *)(mem_buffer + obj->offs);
        }

1802
1803
1804
        obj = obj->next;
    }

1805
    return NULL;
1806
1807
}

1808
1809
1810
struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
    struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
    obj = obj->next;
1811

1812
    char * const mem_buffer = ctx->mem_buffer;
1813

1814
1815
1816
1817
    while (obj != NULL) {
        if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
            return (struct ggml_tensor *)(mem_buffer + obj->offs);
        }
1818

1819
1820
1821
1822
        obj = obj->next;
    }

    return NULL;
1823
1824
}

1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
    struct ggml_object * obj = ctx->objects_begin;

    char * const mem_buffer = ctx->mem_buffer;

    while (obj != NULL) {
        if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
            struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
            if (strcmp(cur->name, name) == 0) {
                return cur;
            }
1836
        }
1837
1838

        obj = obj->next;
1839
1840
    }

1841
    return NULL;
1842
1843
}

1844
////////////////////////////////////////////////////////////////////////////////
1845

1846
// ggml_dup
1847

1848
1849
1850
1851
1852
static struct ggml_tensor * ggml_dup_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        bool                  inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
1853

1854
1855
    result->op     = GGML_OP_DUP;
    result->src[0] = a;
1856

1857
    return result;
1858
1859
}

1860
1861
1862
1863
struct ggml_tensor * ggml_dup(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_dup_impl(ctx, a, false);
1864
1865
}

1866
1867
1868
1869
struct ggml_tensor * ggml_dup_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_dup_impl(ctx, a, true);
1870
1871
}

1872
// ggml_add
1873

1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
static struct ggml_tensor * ggml_add_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        bool                  inplace) {
    GGML_ASSERT(ggml_can_repeat(b, a));

    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);

    result->op     = GGML_OP_ADD;
    result->src[0] = a;
    result->src[1] = b;

    return result;
1888
1889
}

1890
1891
1892
1893
1894
struct ggml_tensor * ggml_add(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_add_impl(ctx, a, b, false);
1895
1896
}

1897
1898
1899
1900
1901
struct ggml_tensor * ggml_add_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_add_impl(ctx, a, b, true);
1902
1903
}

1904
// ggml_add_cast
1905

1906
1907
1908
1909
1910
1911
1912
1913
static struct ggml_tensor * ggml_add_cast_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        enum   ggml_type      type) {
    // TODO: support less-strict constraint
    //       GGML_ASSERT(ggml_can_repeat(b, a));
    GGML_ASSERT(ggml_can_repeat_rows(b, a));
1914

1915
1916
1917
1918
    // currently only supported for quantized input and f16
    GGML_ASSERT(ggml_is_quantized(a->type) ||
                a->type == GGML_TYPE_F16 ||
                a->type == GGML_TYPE_BF16);
1919

1920
    struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
1921

1922
1923
1924
    result->op     = GGML_OP_ADD;
    result->src[0] = a;
    result->src[1] = b;
1925

1926
    return result;
1927
1928
}

1929
1930
1931
1932
1933
1934
struct ggml_tensor * ggml_add_cast(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        enum   ggml_type      type) {
    return ggml_add_cast_impl(ctx, a, b, type);
1935
1936
}

1937
// ggml_add1
1938

1939
1940
1941
1942
1943
1944
1945
static struct ggml_tensor * ggml_add1_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        bool                  inplace) {
    GGML_ASSERT(ggml_is_scalar(b));
    GGML_ASSERT(ggml_is_padded_1d(a));
1946

1947
1948
1949
1950
1951
1952
1953
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);

    result->op     = GGML_OP_ADD1;
    result->src[0] = a;
    result->src[1] = b;

    return result;
1954
1955
}

1956
1957
1958
1959
1960
1961
struct ggml_tensor * ggml_add1(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_add1_impl(ctx, a, b, false);
}
1962

1963
1964
1965
1966
1967
struct ggml_tensor * ggml_add1_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_add1_impl(ctx, a, b, true);
1968
1969
}

1970
// ggml_acc
1971

1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
static struct ggml_tensor * ggml_acc_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        size_t                nb1,
        size_t                nb2,
        size_t                nb3,
        size_t                offset,
        bool                  inplace) {
    GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
    GGML_ASSERT(ggml_is_contiguous(a));
    GGML_ASSERT(a->type == GGML_TYPE_F32);
    GGML_ASSERT(b->type == GGML_TYPE_F32);
1985

1986
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
1987

1988
1989
    int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
    ggml_set_op_params(result, params, sizeof(params));
1990

1991
1992
1993
    result->op     = GGML_OP_ACC;
    result->src[0] = a;
    result->src[1] = b;
1994

1995
    return result;
1996
1997
}

1998
1999
2000
2001
2002
2003
2004
2005
2006
struct ggml_tensor * ggml_acc(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        size_t                nb1,
        size_t                nb2,
        size_t                nb3,
        size_t                offset) {
    return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
2007
2008
}

2009
2010
2011
2012
2013
2014
2015
2016
2017
struct ggml_tensor * ggml_acc_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        size_t                nb1,
        size_t                nb2,
        size_t                nb3,
        size_t                offset) {
    return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
2018
2019
}

2020
// ggml_sub
2021

2022
2023
2024
2025
2026
2027
static struct ggml_tensor * ggml_sub_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        bool                  inplace) {
    GGML_ASSERT(ggml_can_repeat(b, a));
2028

2029
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2030

2031
2032
2033
    result->op     = GGML_OP_SUB;
    result->src[0] = a;
    result->src[1] = b;
2034

2035
    return result;
2036
2037
}

2038
2039
2040
2041
2042
struct ggml_tensor * ggml_sub(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_sub_impl(ctx, a, b, false);
2043
2044
}

2045
2046
2047
2048
2049
struct ggml_tensor * ggml_sub_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_sub_impl(ctx, a, b, true);
2050
2051
}

2052
// ggml_mul
2053

2054
2055
2056
2057
2058
2059
static struct ggml_tensor * ggml_mul_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        bool                  inplace) {
    GGML_ASSERT(ggml_can_repeat(b, a));
2060

2061
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2062

2063
2064
2065
    result->op     = GGML_OP_MUL;
    result->src[0] = a;
    result->src[1] = b;
2066

2067
    return result;
2068
2069
}

2070
2071
2072
2073
2074
struct ggml_tensor * ggml_mul(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_mul_impl(ctx, a, b, false);
2075
2076
}

2077
2078
2079
2080
2081
struct ggml_tensor * ggml_mul_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_mul_impl(ctx, a, b, true);
2082
2083
}

2084
// ggml_div
2085

2086
2087
2088
2089
2090
2091
static struct ggml_tensor * ggml_div_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        bool                  inplace) {
    GGML_ASSERT(ggml_can_repeat(b, a));
2092

2093
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2094

2095
2096
2097
    result->op     = GGML_OP_DIV;
    result->src[0] = a;
    result->src[1] = b;
2098

2099
2100
    return result;
}
2101

2102
2103
2104
2105
2106
2107
struct ggml_tensor * ggml_div(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_div_impl(ctx, a, b, false);
}
2108

2109
2110
2111
2112
2113
2114
struct ggml_tensor * ggml_div_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_div_impl(ctx, a, b, true);
}
2115

2116
// ggml_sqr
2117

2118
2119
2120
2121
2122
static struct ggml_tensor * ggml_sqr_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        bool                  inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2123

2124
2125
    result->op     = GGML_OP_SQR;
    result->src[0] = a;
2126

2127
2128
    return result;
}
2129

2130
2131
2132
2133
2134
struct ggml_tensor * ggml_sqr(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_sqr_impl(ctx, a, false);
}
2135

2136
2137
2138
2139
struct ggml_tensor * ggml_sqr_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_sqr_impl(ctx, a, true);
2140
2141
}

2142
// ggml_sqrt
2143

2144
2145
2146
2147
2148
static struct ggml_tensor * ggml_sqrt_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        bool                  inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2149

2150
2151
    result->op     = GGML_OP_SQRT;
    result->src[0] = a;
2152

2153
2154
    return result;
}
2155

2156
2157
2158
2159
2160
struct ggml_tensor * ggml_sqrt(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_sqrt_impl(ctx, a, false);
}
2161

2162
2163
2164
2165
2166
struct ggml_tensor * ggml_sqrt_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_sqrt_impl(ctx, a, true);
}
2167

2168
// ggml_log
2169

2170
2171
2172
2173
2174
static struct ggml_tensor * ggml_log_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        bool                  inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2175

2176
2177
    result->op     = GGML_OP_LOG;
    result->src[0] = a;
2178

2179
2180
    return result;
}
2181

2182
2183
2184
2185
2186
struct ggml_tensor * ggml_log(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_log_impl(ctx, a, false);
}
2187

2188
2189
2190
2191
2192
struct ggml_tensor * ggml_log_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_log_impl(ctx, a, true);
}
2193

2194
// ggml_sin
2195

2196
2197
2198
2199
2200
static struct ggml_tensor * ggml_sin_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        bool                  inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2201

2202
2203
    result->op     = GGML_OP_SIN;
    result->src[0] = a;
2204

2205
2206
    return result;
}
2207

2208
2209
2210
2211
2212
struct ggml_tensor * ggml_sin(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_sin_impl(ctx, a, false);
}
2213

2214
2215
2216
2217
2218
struct ggml_tensor * ggml_sin_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_sin_impl(ctx, a, true);
}
2219

2220
// ggml_cos
2221

2222
2223
2224
2225
2226
static struct ggml_tensor * ggml_cos_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        bool                  inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2227

2228
2229
    result->op     = GGML_OP_COS;
    result->src[0] = a;
2230

2231
2232
    return result;
}
2233

2234
2235
2236
2237
2238
struct ggml_tensor * ggml_cos(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_cos_impl(ctx, a, false);
}
2239

2240
2241
2242
2243
2244
struct ggml_tensor * ggml_cos_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_cos_impl(ctx, a, true);
}
2245

2246
// ggml_sum
2247

2248
2249
2250
2251
struct ggml_tensor * ggml_sum(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
2252

2253
2254
2255
2256
    result->op     = GGML_OP_SUM;
    result->src[0] = a;

    return result;
2257
2258
}

2259
// ggml_sum_rows
2260

2261
2262
2263
2264
2265
2266
2267
struct ggml_tensor * ggml_sum_rows(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    int64_t ne[GGML_MAX_DIMS] = { 1 };
    for (int i = 1; i < GGML_MAX_DIMS; ++i) {
        ne[i] = a->ne[i];
    }
2268

2269
    struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
2270

2271
2272
    result->op     = GGML_OP_SUM_ROWS;
    result->src[0] = a;
2273

2274
2275
    return result;
}
2276

2277
// ggml_mean
2278

2279
2280
2281
2282
2283
struct ggml_tensor * ggml_mean(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
2284

2285
2286
    result->op     = GGML_OP_MEAN;
    result->src[0] = a;
2287

2288
    return result;
2289
2290
}

2291
2292
2293
2294
2295
2296
2297
// ggml_argmax

struct ggml_tensor * ggml_argmax(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    GGML_ASSERT(ggml_is_matrix(a));
    GGML_ASSERT(a->ne[0] <= INT32_MAX);
2298

2299
    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
2300

2301
2302
    result->op     = GGML_OP_ARGMAX;
    result->src[0] = a;
2303
2304
2305
2306

    return result;
}

2307
// ggml_count_equal
2308

2309
2310
2311
2312
2313
struct ggml_tensor * ggml_count_equal(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    GGML_ASSERT(ggml_are_same_shape(a, b));
2314

2315
    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, 1);
2316

2317
2318
2319
2320
2321
    result->op     = GGML_OP_COUNT_EQUAL;
    result->src[0] = a;
    result->src[1] = b;

    return result;
2322
2323
}

2324
// ggml_repeat
2325

2326
2327
2328
2329
2330
struct ggml_tensor * ggml_repeat(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    GGML_ASSERT(ggml_can_repeat(a, b));
2331

2332
    struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
2333

2334
2335
    result->op     = GGML_OP_REPEAT;
    result->src[0] = a;
2336

2337
    return result;
2338
2339
}

2340
// ggml_repeat_back
2341

2342
2343
2344
2345
2346
struct ggml_tensor * ggml_repeat_back(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    GGML_ASSERT(ggml_can_repeat(b, a));
2347

2348
    struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
2349

2350
2351
    result->op     = GGML_OP_REPEAT_BACK;
    result->src[0] = a;
2352

2353
2354
    return result;
}
2355

2356
// ggml_concat
2357

2358
2359
2360
2361
2362
2363
struct ggml_tensor * ggml_concat(
    struct ggml_context * ctx,
    struct ggml_tensor  * a,
    struct ggml_tensor  * b,
    int                   dim) {
    GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
2364

2365
2366
2367
2368
2369
2370
2371
2372
    int64_t ne[GGML_MAX_DIMS];
    for (int d = 0; d < GGML_MAX_DIMS; ++d) {
        if (d == dim) {
            ne[d] = a->ne[d] + b->ne[d];
            continue;
        }
        GGML_ASSERT(a->ne[d] == b->ne[d]);
        ne[d] = a->ne[d];
2373
2374
    }

2375
    struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
2376

2377
    ggml_set_op_params_i32(result, 0, dim);
2378

2379
2380
2381
    result->op     = GGML_OP_CONCAT;
    result->src[0] = a;
    result->src[1] = b;
2382

2383
2384
    return result;
}
2385

2386
// ggml_abs
2387

2388
2389
2390
2391
struct ggml_tensor * ggml_abs(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
2392
2393
}

2394
struct ggml_tensor * ggml_abs_inplace(
2395
        struct ggml_context * ctx,
2396
2397
2398
        struct ggml_tensor  * a) {
    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
}
2399

2400
// ggml_sgn
2401

2402
2403
2404
2405
2406
struct ggml_tensor * ggml_sgn(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
}
2407

2408
2409
2410
2411
2412
struct ggml_tensor * ggml_sgn_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
}
2413

2414
// ggml_neg
2415

2416
2417
2418
2419
2420
struct ggml_tensor * ggml_neg(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
}
2421

2422
2423
2424
2425
2426
struct ggml_tensor * ggml_neg_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
}
2427

2428
// ggml_step
2429

2430
2431
2432
2433
2434
struct ggml_tensor * ggml_step(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
}
2435

2436
2437
2438
2439
2440
struct ggml_tensor * ggml_step_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
}
2441

2442
// ggml_tanh
2443

2444
2445
2446
2447
2448
struct ggml_tensor * ggml_tanh(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
}
2449

2450
2451
2452
2453
2454
struct ggml_tensor * ggml_tanh_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
}
2455

2456
// ggml_elu
2457

2458
2459
2460
2461
2462
struct ggml_tensor * ggml_elu(
    struct ggml_context * ctx,
    struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
}
2463

2464
2465
2466
2467
2468
struct ggml_tensor * ggml_elu_inplace(
    struct ggml_context * ctx,
    struct ggml_tensor  * a) {
    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
}
2469

2470
// ggml_relu
2471

2472
2473
2474
2475
2476
struct ggml_tensor * ggml_relu(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
}
2477

2478
2479
2480
2481
2482
struct ggml_tensor * ggml_relu_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
}
2483

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
// ggml_leaky_relu

struct ggml_tensor * ggml_leaky_relu(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        float                 negative_slope,
        bool                  inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);

    ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));

    result->op     = GGML_OP_LEAKY_RELU;
    result->src[0] = a;
2497
2498
2499
2500

    return result;
}

2501
2502
2503
// ggml_sigmoid

struct ggml_tensor * ggml_sigmoid(
2504
        struct ggml_context * ctx,
2505
2506
        struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
2507
2508
}

2509
struct ggml_tensor * ggml_sigmoid_inplace(
2510
        struct ggml_context * ctx,
2511
2512
        struct ggml_tensor  * a) {
    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
2513
2514
}

2515
2516
2517
// ggml_gelu

struct ggml_tensor * ggml_gelu(
2518
        struct ggml_context * ctx,
2519
2520
        struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
2521
2522
}

2523
struct ggml_tensor * ggml_gelu_inplace(
2524
        struct ggml_context * ctx,
2525
2526
        struct ggml_tensor  * a) {
    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
2527
2528
}

2529
2530
2531
// ggml_gelu_quick

struct ggml_tensor * ggml_gelu_quick(
2532
        struct ggml_context * ctx,
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
        struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
}

struct ggml_tensor * ggml_gelu_quick_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
}

// ggml_silu

struct ggml_tensor * ggml_silu(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
2549
2550
}

2551
2552
2553
2554
2555
struct ggml_tensor * ggml_silu_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
}
2556

2557
// ggml_silu_back
2558

2559
2560
2561
2562
2563
struct ggml_tensor * ggml_silu_back(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
2564

2565
2566
2567
    result->op     = GGML_OP_SILU_BACK;
    result->src[0] = a;
    result->src[1] = b;
2568
2569
2570
2571

    return result;
}

2572
2573
2574
2575
2576
2577
2578
// ggml hardswish

struct ggml_tensor * ggml_hardswish(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
}
2579

2580
// ggml hardsigmoid
2581

2582
2583
2584
2585
2586
struct ggml_tensor * ggml_hardsigmoid(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
}
2587

2588
// ggml exp
2589

2590
2591
2592
2593
struct ggml_tensor * ggml_exp(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary(ctx, a, GGML_UNARY_OP_EXP);
2594
2595
}

2596
2597
2598
2599
struct ggml_tensor * ggml_exp_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_EXP);
2600
2601
}

2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
// ggml_norm

static struct ggml_tensor * ggml_norm_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        float                 eps,
        bool                  inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);

    ggml_set_op_params(result, &eps, sizeof(eps));

    result->op     = GGML_OP_NORM;
    result->src[0] = a;

    return result;
2617
2618
}

2619
2620
2621
2622
2623
struct ggml_tensor * ggml_norm(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        float                 eps) {
    return ggml_norm_impl(ctx, a, eps, false);
2624
2625
}

2626
2627
2628
2629
2630
struct ggml_tensor * ggml_norm_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        float                 eps) {
    return ggml_norm_impl(ctx, a, eps, true);
2631
2632
}

2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
// ggml_rms_norm

static struct ggml_tensor * ggml_rms_norm_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        float                 eps,
        bool                  inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);

    ggml_set_op_params(result, &eps, sizeof(eps));

    result->op     = GGML_OP_RMS_NORM;
    result->src[0] = a;

    return result;
2648
2649
}

2650
2651
2652
2653
2654
struct ggml_tensor * ggml_rms_norm(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        float                 eps) {
    return ggml_rms_norm_impl(ctx, a, eps, false);
2655
2656
}

2657
2658
2659
2660
2661
struct ggml_tensor * ggml_rms_norm_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        float                 eps) {
    return ggml_rms_norm_impl(ctx, a, eps, true);
2662
2663
}

2664
// ggml_rms_norm_back
2665

2666
2667
2668
2669
2670
2671
struct ggml_tensor * ggml_rms_norm_back(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        float                 eps) {
    struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
2672

2673
    ggml_set_op_params(result, &eps, sizeof(eps));
2674

2675
2676
2677
2678
2679
    result->op     = GGML_OP_RMS_NORM_BACK;
    result->src[0] = a;
    result->src[1] = b;

    return result;
2680
2681
}

2682
// ggml_group_norm
2683

2684
2685
2686
2687
2688
2689
2690
static struct ggml_tensor * ggml_group_norm_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   n_groups,
        float                 eps,
        bool                  inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
2691

2692
2693
    ggml_set_op_params_i32(result, 0, n_groups);
    ggml_set_op_params_f32(result, 1, eps);
2694

2695
2696
    result->op     = GGML_OP_GROUP_NORM;
    result->src[0] = a;
2697

2698
    return result;
2699
2700
}

2701
2702
2703
2704
2705
2706
struct ggml_tensor * ggml_group_norm(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   n_groups,
        float                 eps) {
    return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
2707
2708
}

2709
2710
2711
2712
2713
2714
struct ggml_tensor * ggml_group_norm_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   n_groups,
        float                 eps) {
    return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
2715
2716
}

2717
// ggml_mul_mat
2718

2719
2720
static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
2721

2722
2723
2724
    return (t0->ne[0]           == t1->ne[0])  &&
           (t1->ne[2]%t0->ne[2] == 0)          && // verify t0 is broadcastable
           (t1->ne[3]%t0->ne[3] == 0);
2725
2726
}

2727
2728
2729
2730
2731
2732
struct ggml_tensor * ggml_mul_mat(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    GGML_ASSERT(ggml_can_mul_mat(a, b));
    GGML_ASSERT(!ggml_is_transposed(a));
2733

2734
2735
    const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
2736

2737
2738
2739
    result->op     = GGML_OP_MUL_MAT;
    result->src[0] = a;
    result->src[1] = b;
2740

2741
    return result;
2742
2743
}

2744
2745
2746
2747
void ggml_mul_mat_set_prec(
        struct ggml_tensor * a,
        enum ggml_prec       prec) {
    GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
2748

2749
    const int32_t prec_i32 = (int32_t) prec;
2750

2751
    ggml_set_op_params_i32(a, 0, prec_i32);
2752
2753
}

2754
// ggml_mul_mat_id
2755

2756
2757
/*
    c = ggml_mul_mat_id(ctx, as, b, ids);
2758

2759
2760
2761
2762
    as  -> [cols, rows, n_expert]
    ids -> [n_experts_used, n_tokens] (i32)
    b   -> [cols, n_expert_used, n_tokens]
    c   -> [rows, n_expert_used, n_tokens]
2763

2764
    in b, n_experts_used can be broadcasted to match the n_expert_used of ids
2765

2766
2767
2768
    c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
*/
struct ggml_tensor * ggml_mul_mat_id(
2769
        struct ggml_context * ctx,
2770
        struct ggml_tensor  * as,
2771
        struct ggml_tensor  * b,
2772
2773
2774
        struct ggml_tensor  * ids) {
    GGML_ASSERT(!ggml_is_transposed(as));
    GGML_ASSERT(ids->type == GGML_TYPE_I32);
2775

2776
2777
2778
2779
2780
2781
    GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
    GGML_ASSERT(b->ne[3] == 1); // b is 3d
    GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
    GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
    GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
    GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
2782

2783
2784
2785
2786
2787
    const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);

    result->op     = GGML_OP_MUL_MAT_ID;
    result->src[0] = as;
2788
    result->src[1] = b;
2789
    result->src[2] = ids;
2790
2791
2792
2793

    return result;
}

2794
// ggml_out_prod
2795

2796
2797
static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
2798

2799
2800
2801
2802
    return (t0->ne[1] == t1->ne[1])   &&
           (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
           (t1->ne[3]%t0->ne[3] == 0);
}
2803

2804
struct ggml_tensor * ggml_out_prod(
2805
        struct ggml_context * ctx,
2806
        struct ggml_tensor  * a,
2807
2808
2809
        struct ggml_tensor  * b) {
    GGML_ASSERT(ggml_can_out_prod(a, b));
    GGML_ASSERT(!ggml_is_transposed(a));
2810

2811
2812
2813
    // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
    const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
2814

2815
    result->op     = GGML_OP_OUT_PROD;
2816
2817
2818
2819
2820
2821
    result->src[0] = a;
    result->src[1] = b;

    return result;
}

2822
// ggml_scale
2823

2824
static struct ggml_tensor * ggml_scale_impl(
2825
        struct ggml_context * ctx,
2826
        struct ggml_tensor  * a,
2827
        float                 s,
2828
        bool                  inplace) {
2829
2830
2831
2832
    GGML_ASSERT(ggml_is_padded_1d(a));

    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);

2833
2834
2835
    ggml_set_op_params(result, &s, sizeof(s));

    result->op     = GGML_OP_SCALE;
2836
2837
2838
2839
2840
    result->src[0] = a;

    return result;
}

2841
struct ggml_tensor * ggml_scale(
2842
        struct ggml_context * ctx,
2843
        struct ggml_tensor  * a,
2844
2845
        float                 s) {
    return ggml_scale_impl(ctx, a, s, false);
2846
2847
}

2848
struct ggml_tensor * ggml_scale_inplace(
2849
        struct ggml_context * ctx,
2850
        struct ggml_tensor  * a,
2851
2852
        float                 s) {
    return ggml_scale_impl(ctx, a, s, true);
2853
2854
}

2855
// ggml_set
2856

2857
static struct ggml_tensor * ggml_set_impl(
2858
        struct ggml_context * ctx,
2859
2860
2861
2862
2863
2864
2865
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        size_t                nb1,
        size_t                nb2,
        size_t                nb3,
        size_t                offset,
        bool                  inplace) {
2866
    GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
2867

2868
    // make a view of the destination
2869
2870
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);

2871
    GGML_ASSERT(offset < (size_t)(1 << 30));
2872
2873
2874
    int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
    ggml_set_op_params(result, params, sizeof(params));

2875
    result->op     = GGML_OP_SET;
2876
2877
2878
2879
2880
2881
    result->src[0] = a;
    result->src[1] = b;

    return result;
}

2882
struct ggml_tensor * ggml_set(
2883
        struct ggml_context * ctx,
2884
2885
2886
2887
2888
2889
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        size_t                nb1,
        size_t                nb2,
        size_t                nb3,
        size_t                offset) {
2890
    return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
2891
2892
}

2893
struct ggml_tensor * ggml_set_inplace(
2894
        struct ggml_context * ctx,
2895
2896
2897
2898
2899
2900
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        size_t                nb1,
        size_t                nb2,
        size_t                nb3,
        size_t                offset) {
2901
    return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
2902
2903
}

2904
struct ggml_tensor * ggml_set_1d(
2905
        struct ggml_context * ctx,
2906
2907
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
2908
2909
        size_t                offset) {
    return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
2910
2911
}

2912
struct ggml_tensor * ggml_set_1d_inplace(
2913
        struct ggml_context * ctx,
2914
        struct ggml_tensor  * a,
2915
2916
2917
        struct ggml_tensor  * b,
        size_t                offset) {
    return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
2918
2919
}

2920
struct ggml_tensor * ggml_set_2d(
2921
        struct ggml_context * ctx,
2922
        struct ggml_tensor  * a,
2923
2924
2925
2926
        struct ggml_tensor  * b,
        size_t                nb1,
        size_t                offset) {
    return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
2927
2928
}

2929
struct ggml_tensor * ggml_set_2d_inplace(
2930
        struct ggml_context * ctx,
2931
2932
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
2933
2934
2935
2936
        size_t                nb1,
        size_t                offset) {
    return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
}
2937

2938
// ggml_cpy
2939

2940
static struct ggml_tensor * ggml_cpy_impl(
2941
2942
2943
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
2944
    GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
2945

2946
2947
2948
2949
2950
2951
2952
    // make a view of the destination
    struct ggml_tensor * result = ggml_view_tensor(ctx, b);
    if (strlen(b->name) > 0) {
        ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
    } else {
        ggml_format_name(result, "%s (copy)", a->name);
    }
2953

2954
    result->op     = GGML_OP_CPY;
2955
2956
2957
2958
2959
2960
    result->src[0] = a;
    result->src[1] = b;

    return result;
}

2961
struct ggml_tensor * ggml_cpy(
2962
        struct ggml_context * ctx,
2963
2964
2965
        struct ggml_tensor * a,
        struct ggml_tensor * b) {
    return ggml_cpy_impl(ctx, a, b);
2966
2967
}

2968
struct ggml_tensor * ggml_cast(
2969
        struct ggml_context * ctx,
2970
        struct ggml_tensor  * a,
2971
2972
2973
        enum   ggml_type      type) {
    struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
    ggml_format_name(result, "%s (copy)", a->name);
2974

2975
    result->op     = GGML_OP_CPY;
2976
    result->src[0] = a;
2977
    result->src[1] = result;
2978
2979
2980
2981

    return result;
}

2982
// ggml_cont
2983

2984
static struct ggml_tensor * ggml_cont_impl(
2985
2986
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
2987
2988
    struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
    ggml_format_name(result, "%s (cont)", a->name);
2989

2990
    result->op     = GGML_OP_CONT;
2991
2992
2993
2994
2995
    result->src[0] = a;

    return result;
}

2996
struct ggml_tensor * ggml_cont(
2997
        struct ggml_context * ctx,
2998
2999
        struct ggml_tensor * a) {
    return ggml_cont_impl(ctx, a);
3000
3001
}

3002
3003
// make contiguous, with new shape
GGML_API struct ggml_tensor * ggml_cont_1d(
3004
3005
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
3006
3007
        int64_t               ne0) {
    return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
3008
3009
}

3010
GGML_API struct ggml_tensor * ggml_cont_2d(
3011
        struct ggml_context * ctx,
3012
3013
3014
3015
        struct ggml_tensor  * a,
        int64_t               ne0,
        int64_t               ne1) {
    return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
3016
3017
}

3018
GGML_API struct ggml_tensor * ggml_cont_3d(
3019
        struct ggml_context * ctx,
3020
3021
3022
3023
3024
        struct ggml_tensor  * a,
        int64_t               ne0,
        int64_t               ne1,
        int64_t               ne2) {
    return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
3025
3026
}

3027
struct ggml_tensor * ggml_cont_4d(
3028
3029
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
3030
3031
3032
3033
3034
        int64_t               ne0,
        int64_t               ne1,
        int64_t               ne2,
        int64_t               ne3) {
    GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
3035

3036
3037
3038
3039
    struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
    ggml_format_name(result, "%s (cont)", a->name);

    result->op     = GGML_OP_CONT;
3040
3041
3042
3043
3044
    result->src[0] = a;

    return result;
}

3045
// ggml_reshape
3046

3047
struct ggml_tensor * ggml_reshape(
3048
        struct ggml_context * ctx,
3049
3050
3051
3052
3053
        struct ggml_tensor * a,
        struct ggml_tensor * b) {
    GGML_ASSERT(ggml_is_contiguous(a));
    // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
    GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
3054

3055
3056
    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
    ggml_format_name(result, "%s (reshaped)", a->name);
3057

3058
    result->op     = GGML_OP_RESHAPE;
3059
3060
3061
3062
3063
    result->src[0] = a;

    return result;
}

3064
struct ggml_tensor * ggml_reshape_1d(
3065
        struct ggml_context * ctx,
3066
3067
3068
3069
        struct ggml_tensor  * a,
        int64_t               ne0) {
    GGML_ASSERT(ggml_is_contiguous(a));
    GGML_ASSERT(ggml_nelements(a) == ne0);
3070

3071
3072
3073
    const int64_t ne[1] = { ne0 };
    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
    ggml_format_name(result, "%s (reshaped)", a->name);
3074

3075
    result->op     = GGML_OP_RESHAPE;
3076
3077
3078
3079
3080
    result->src[0] = a;

    return result;
}

3081
struct ggml_tensor * ggml_reshape_2d(
3082
        struct ggml_context * ctx,
3083
3084
3085
3086
3087
        struct ggml_tensor  * a,
        int64_t               ne0,
        int64_t               ne1) {
    GGML_ASSERT(ggml_is_contiguous(a));
    GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
3088

3089
3090
3091
    const int64_t ne[2] = { ne0, ne1 };
    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
    ggml_format_name(result, "%s (reshaped)", a->name);
3092

3093
    result->op     = GGML_OP_RESHAPE;
3094
3095
3096
3097
3098
    result->src[0] = a;

    return result;
}

3099
struct ggml_tensor * ggml_reshape_3d(
3100
        struct ggml_context * ctx,
3101
3102
3103
3104
3105
3106
        struct ggml_tensor  * a,
        int64_t               ne0,
        int64_t               ne1,
        int64_t               ne2) {
    GGML_ASSERT(ggml_is_contiguous(a));
    GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
3107

3108
3109
3110
3111
3112
    const int64_t ne[3] = { ne0, ne1, ne2 };
    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
    ggml_format_name(result, "%s (reshaped)", a->name);

    result->op     = GGML_OP_RESHAPE;
3113
3114
3115
3116
3117
    result->src[0] = a;

    return result;
}

3118
struct ggml_tensor * ggml_reshape_4d(
3119
        struct ggml_context * ctx,
3120
3121
3122
3123
3124
3125
3126
        struct ggml_tensor  * a,
        int64_t               ne0,
        int64_t               ne1,
        int64_t               ne2,
        int64_t               ne3) {
    GGML_ASSERT(ggml_is_contiguous(a));
    GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
3127

3128
3129
3130
    const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
    ggml_format_name(result, "%s (reshaped)", a->name);
3131

3132
    result->op     = GGML_OP_RESHAPE;
3133
3134
3135
3136
3137
    result->src[0] = a;

    return result;
}

3138
static struct ggml_tensor * ggml_view_impl(
3139
        struct ggml_context * ctx,
3140
        struct ggml_tensor  * a,
3141
3142
3143
3144
3145
        int                   n_dims,
        const int64_t       * ne,
        size_t                offset) {
    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
    ggml_format_name(result, "%s (view)", a->name);
3146

3147
    ggml_set_op_params(result, &offset, sizeof(offset));
3148

3149
    result->op     = GGML_OP_VIEW;
3150
3151
3152
3153
3154
    result->src[0] = a;

    return result;
}

3155
// ggml_view_1d
3156

3157
struct ggml_tensor * ggml_view_1d(
3158
        struct ggml_context * ctx,
3159
        struct ggml_tensor  * a,
3160
3161
3162
        int64_t               ne0,
        size_t                offset) {
    struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
3163
3164
3165
3166

    return result;
}

3167
// ggml_view_2d
3168

3169
3170
3171
3172
3173
3174
3175
3176
struct ggml_tensor * ggml_view_2d(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int64_t               ne0,
        int64_t               ne1,
        size_t                nb1,
        size_t                offset) {
    const int64_t ne[2] = { ne0, ne1 };
3177

3178
    struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
3179

3180
3181
3182
    result->nb[1] = nb1;
    result->nb[2] = result->nb[1]*ne1;
    result->nb[3] = result->nb[2];
3183
3184
3185
3186

    return result;
}

3187
// ggml_view_3d
3188

3189
struct ggml_tensor * ggml_view_3d(
3190
        struct ggml_context * ctx,
3191
3192
3193
3194
3195
3196
3197
3198
        struct ggml_tensor  * a,
        int64_t               ne0,
        int64_t               ne1,
        int64_t               ne2,
        size_t                nb1,
        size_t                nb2,
        size_t                offset) {
    const int64_t ne[3] = { ne0, ne1, ne2 };
3199

3200
    struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
3201

3202
3203
3204
    result->nb[1] = nb1;
    result->nb[2] = nb2;
    result->nb[3] = result->nb[2]*ne2;
3205

3206
    return result;
3207
3208
}

3209
// ggml_view_4d
3210

3211
struct ggml_tensor * ggml_view_4d(
3212
        struct ggml_context * ctx,
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
        struct ggml_tensor  * a,
        int64_t               ne0,
        int64_t               ne1,
        int64_t               ne2,
        int64_t               ne3,
        size_t                nb1,
        size_t                nb2,
        size_t                nb3,
        size_t                offset) {
    const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
3223

3224
    struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
3225

3226
3227
3228
    result->nb[1] = nb1;
    result->nb[2] = nb2;
    result->nb[3] = nb3;
3229

3230
    return result;
3231
3232
}

3233
// ggml_permute
3234

3235
struct ggml_tensor * ggml_permute(
3236
        struct ggml_context * ctx,
3237
3238
3239
3240
3241
3242
3243
3244
3245
        struct ggml_tensor  * a,
        int                   axis0,
        int                   axis1,
        int                   axis2,
        int                   axis3) {
    GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
    GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
    GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
    GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
3246

3247
3248
3249
3250
3251
3252
    GGML_ASSERT(axis0 != axis1);
    GGML_ASSERT(axis0 != axis2);
    GGML_ASSERT(axis0 != axis3);
    GGML_ASSERT(axis1 != axis2);
    GGML_ASSERT(axis1 != axis3);
    GGML_ASSERT(axis2 != axis3);
3253

3254
3255
    struct ggml_tensor * result = ggml_view_tensor(ctx, a);
    ggml_format_name(result, "%s (permuted)", a->name);
3256

3257
3258
    int ne[GGML_MAX_DIMS];
    int nb[GGML_MAX_DIMS];
3259

3260
3261
3262
3263
    ne[axis0] = a->ne[0];
    ne[axis1] = a->ne[1];
    ne[axis2] = a->ne[2];
    ne[axis3] = a->ne[3];
3264

3265
3266
3267
3268
    nb[axis0] = a->nb[0];
    nb[axis1] = a->nb[1];
    nb[axis2] = a->nb[2];
    nb[axis3] = a->nb[3];
3269

3270
3271
3272
3273
    result->ne[0] = ne[0];
    result->ne[1] = ne[1];
    result->ne[2] = ne[2];
    result->ne[3] = ne[3];
3274

3275
3276
3277
3278
    result->nb[0] = nb[0];
    result->nb[1] = nb[1];
    result->nb[2] = nb[2];
    result->nb[3] = nb[3];
3279

3280
    result->op     = GGML_OP_PERMUTE;
3281
3282
    result->src[0] = a;

3283
3284
    int32_t params[] = { axis0, axis1, axis2, axis3 };
    ggml_set_op_params(result, params, sizeof(params));
3285

3286
    return result;
3287
3288
}

3289
// ggml_transpose
3290

3291
struct ggml_tensor * ggml_transpose(
3292
3293
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
3294
3295
    struct ggml_tensor * result = ggml_view_tensor(ctx, a);
    ggml_format_name(result, "%s (transposed)", a->name);
3296

3297
3298
    result->ne[0] = a->ne[1];
    result->ne[1] = a->ne[0];
3299

3300
3301
    result->nb[0] = a->nb[1];
    result->nb[1] = a->nb[0];
3302

3303
3304
    result->op     = GGML_OP_TRANSPOSE;
    result->src[0] = a;
3305

3306
    return result;
3307
3308
}

3309
// ggml_get_rows
3310

3311
3312
3313
3314
3315
3316
3317
struct ggml_tensor * ggml_get_rows(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    GGML_ASSERT(a->ne[2] == b->ne[1]);
    GGML_ASSERT(b->ne[3] == 1);
    GGML_ASSERT(b->type == GGML_TYPE_I32);
3318

3319
3320
3321
3322
    // TODO: implement non F32 return
    enum ggml_type type = GGML_TYPE_F32;
    if (a->type == GGML_TYPE_I32) {
        type = a->type;
3323
    }
3324
    struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
3325

3326
3327
3328
    result->op     = GGML_OP_GET_ROWS;
    result->src[0] = a;
    result->src[1] = b;
3329

3330
3331
    return result;
}
3332

3333
// ggml_get_rows_back
3334

3335
3336
3337
3338
3339
3340
3341
struct ggml_tensor * ggml_get_rows_back(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        struct ggml_tensor  * c) {
    GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
    GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
3342

3343
3344
3345
3346
3347
3348
3349
3350
3351
    // TODO: implement non F32 return
    //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
    struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);

    result->op     = GGML_OP_GET_ROWS_BACK;
    result->src[0] = a;
    result->src[1] = b;

    return result;
3352
3353
}

3354
// ggml_diag
3355

3356
3357
3358
3359
struct ggml_tensor * ggml_diag(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    GGML_ASSERT(a->ne[1] == 1);
3360

3361
3362
    const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
    struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
3363

3364
3365
    result->op     = GGML_OP_DIAG;
    result->src[0] = a;
3366

3367
    return result;
3368
3369
}

3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
// ggml_diag_mask_inf

static struct ggml_tensor * ggml_diag_mask_inf_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   n_past,
        bool                  inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);

    int32_t params[] = { n_past };
    ggml_set_op_params(result, params, sizeof(params));

    result->op     = GGML_OP_DIAG_MASK_INF;
    result->src[0] = a;

    return result;
3386
3387
}

3388
3389
3390
3391
3392
3393
struct ggml_tensor * ggml_diag_mask_inf(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   n_past) {
    return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
}
3394

3395
3396
3397
3398
3399
3400
struct ggml_tensor * ggml_diag_mask_inf_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   n_past) {
    return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
}
3401

3402
// ggml_diag_mask_zero
3403

3404
3405
3406
3407
3408
3409
static struct ggml_tensor * ggml_diag_mask_zero_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   n_past,
        bool                  inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
3410

3411
3412
    int32_t params[] = { n_past };
    ggml_set_op_params(result, params, sizeof(params));
3413

3414
3415
    result->op     = GGML_OP_DIAG_MASK_ZERO;
    result->src[0] = a;
3416

3417
3418
    return result;
}
3419

3420
3421
3422
3423
3424
3425
struct ggml_tensor * ggml_diag_mask_zero(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   n_past) {
    return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
}
3426

3427
3428
3429
3430
3431
3432
struct ggml_tensor * ggml_diag_mask_zero_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   n_past) {
    return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
}
3433

3434
// ggml_soft_max
3435

3436
3437
3438
3439
3440
3441
3442
3443
static struct ggml_tensor * ggml_soft_max_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * mask,
        float                 scale,
        float                 max_bias,
        bool                  inplace) {
    GGML_ASSERT(ggml_is_contiguous(a));
3444

3445
3446
3447
3448
3449
3450
    if (mask) {
        GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
        GGML_ASSERT(ggml_is_contiguous(mask));
        GGML_ASSERT(ggml_is_matrix(mask));
        GGML_ASSERT(mask->ne[0] == a->ne[0]);
        GGML_ASSERT(mask->ne[1] >= a->ne[1]);
3451
3452
    }

3453
3454
    if (max_bias > 0.0f) {
        GGML_ASSERT(mask);
3455
3456
    }

3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);

    float params[] = { scale, max_bias };
    ggml_set_op_params(result, params, sizeof(params));

    result->op     = GGML_OP_SOFT_MAX;
    result->src[0] = a;
    result->src[1] = mask;

    return result;
}

struct ggml_tensor * ggml_soft_max(
        struct ggml_context * ctx,
        struct ggml_tensor  * a) {
    return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
3473
3474
}

3475
struct ggml_tensor * ggml_soft_max_inplace(
3476
        struct ggml_context * ctx,
3477
3478
3479
        struct ggml_tensor  * a) {
    return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
}
3480

3481
3482
3483
3484
3485
3486
3487
struct ggml_tensor * ggml_soft_max_ext(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * mask,
        float                 scale,
        float                 max_bias) {
    return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
3488
3489
}

3490
// ggml_soft_max_back
3491

3492
3493
3494
3495
3496
3497
static struct ggml_tensor * ggml_soft_max_back_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        bool                  inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
3498

3499
3500
3501
    result->op     = GGML_OP_SOFT_MAX_BACK;
    result->src[0] = a;
    result->src[1] = b;
3502

3503
    return result;
3504
3505
}

3506
3507
3508
3509
3510
struct ggml_tensor * ggml_soft_max_back(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_soft_max_back_impl(ctx, a, b, false);
3511
3512
}

3513
3514
3515
3516
3517
struct ggml_tensor * ggml_soft_max_back_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_soft_max_back_impl(ctx, a, b, true);
3518
3519
}

3520
// ggml_rope
3521

3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
static struct ggml_tensor * ggml_rope_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        struct ggml_tensor  * c,
        int                   n_dims,
        int                   mode,
        int                   n_ctx_orig,
        float                 freq_base,
        float                 freq_scale,
        float                 ext_factor,
        float                 attn_factor,
        float                 beta_fast,
        float                 beta_slow,
        bool                  inplace) {
    GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
3538

3539
3540
3541
    GGML_ASSERT(ggml_is_vector(b));
    GGML_ASSERT(b->type == GGML_TYPE_I32);
    GGML_ASSERT(a->ne[2] == b->ne[0]);
3542

3543
3544
3545
3546
    if (c) {
        GGML_ASSERT(c->type == GGML_TYPE_F32);
        GGML_ASSERT(c->ne[0] >= n_dims / 2);
    }
3547

3548
3549
    int sections[4] = {0, 0, 0, 0};

3550
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
3551

3552
    int32_t params[15] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
3553
3554
3555
3556
3557
3558
    memcpy(params +  5, &freq_base,    sizeof(float));
    memcpy(params +  6, &freq_scale,   sizeof(float));
    memcpy(params +  7, &ext_factor,   sizeof(float));
    memcpy(params +  8, &attn_factor,  sizeof(float));
    memcpy(params +  9, &beta_fast,    sizeof(float));
    memcpy(params + 10, &beta_slow,    sizeof(float));
3559
    memcpy(params + 11, &sections,     sizeof(int)*4);
3560
    ggml_set_op_params(result, params, sizeof(params));
3561

3562
3563
3564
3565
    result->op     = GGML_OP_ROPE;
    result->src[0] = a;
    result->src[1] = b;
    result->src[2] = c;
3566

3567
    return result;
3568
3569
}

3570
3571
3572
3573
3574
3575
3576
3577
3578
struct ggml_tensor * ggml_rope(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        int                   n_dims,
        int                   mode) {
    return ggml_rope_impl(
        ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
    );
3579
3580
}

3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
struct ggml_tensor * ggml_rope_multi(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        struct ggml_tensor  * c,
        int                   n_dims,
        int                   sections[4],
        int                   mode,
        int                   n_ctx_orig,
        float                 freq_base,
        float                 freq_scale,
        float                 ext_factor,
        float                 attn_factor,
        float                 beta_fast,
        float                 beta_slow) {
    // Multimodal Rotary Position Embedding
    GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");

    GGML_ASSERT(ggml_is_vector(b));
    GGML_ASSERT(b->type == GGML_TYPE_I32);
    GGML_ASSERT(a->ne[2] * 4 == b->ne[0]); // mrope expecting 4 position ids per token

    if (c) {
        GGML_ASSERT(c->type == GGML_TYPE_F32);
        GGML_ASSERT(c->ne[0] >= n_dims / 2);
    }

    struct ggml_tensor * result = ggml_dup_tensor(ctx, a);

    int32_t params[11 + 4] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
    memcpy(params +  5, &freq_base,    sizeof(float));
    memcpy(params +  6, &freq_scale,   sizeof(float));
    memcpy(params +  7, &ext_factor,   sizeof(float));
    memcpy(params +  8, &attn_factor,  sizeof(float));
    memcpy(params +  9, &beta_fast,    sizeof(float));
    memcpy(params + 10, &beta_slow,    sizeof(float));
    memcpy(&params[11], sections,      sizeof(int)*4);
    ggml_set_op_params(result, params, sizeof(params));

    result->op   = GGML_OP_ROPE;
    result->src[0] = a;
    result->src[1] = b;
    result->src[2] = c;

    return result;
}

3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
struct ggml_tensor * ggml_rope_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        int                   n_dims,
        int                   mode) {
    return ggml_rope_impl(
        ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
    );
}
3638

3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
struct ggml_tensor * ggml_rope_ext(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        struct ggml_tensor  * c,
        int                   n_dims,
        int                   mode,
        int                   n_ctx_orig,
        float                 freq_base,
        float                 freq_scale,
        float                 ext_factor,
        float                 attn_factor,
        float                 beta_fast,
        float                 beta_slow) {
    return ggml_rope_impl(
        ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
        ext_factor, attn_factor, beta_fast, beta_slow, false
    );
3657
3658
}

3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
struct ggml_tensor * ggml_rope_ext_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        struct ggml_tensor  * c,
        int                   n_dims,
        int                   mode,
        int                   n_ctx_orig,
        float                 freq_base,
        float                 freq_scale,
        float                 ext_factor,
        float                 attn_factor,
        float                 beta_fast,
        float                 beta_slow) {
    return ggml_rope_impl(
        ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
        ext_factor, attn_factor, beta_fast, beta_slow, true
    );
}
3678

3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
struct ggml_tensor * ggml_rope_custom(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        int                   n_dims,
        int                   mode,
        int                   n_ctx_orig,
        float                 freq_base,
        float                 freq_scale,
        float                 ext_factor,
        float                 attn_factor,
        float                 beta_fast,
        float                 beta_slow) {
    return ggml_rope_impl(
        ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
        ext_factor, attn_factor, beta_fast, beta_slow, false
    );
}
3697

3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
struct ggml_tensor * ggml_rope_custom_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        int                   n_dims,
        int                   mode,
        int                   n_ctx_orig,
        float                 freq_base,
        float                 freq_scale,
        float                 ext_factor,
        float                 attn_factor,
        float                 beta_fast,
        float                 beta_slow) {
    return ggml_rope_impl(
        ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
        ext_factor, attn_factor, beta_fast, beta_slow, true
    );
}

// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
// `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
    return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
}

void ggml_rope_yarn_corr_dims(
    int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
) {
    // start and end correction dims
    float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
    float end   =  ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
    dims[0] = MAX(0, start);
    dims[1] = MIN(n_dims - 1, end);
}

// ggml_rope_back

struct ggml_tensor * ggml_rope_back(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        struct ggml_tensor  * c,
        int                   n_dims,
        int                   mode,
        int                   n_ctx_orig,
        float                 freq_base,
        float                 freq_scale,
        float                 ext_factor,
        float                 attn_factor,
        float                 beta_fast,
        float                 beta_slow) {
    GGML_ASSERT(ggml_is_vector(b));
    GGML_ASSERT(b->type == GGML_TYPE_I32);
    GGML_ASSERT(a->ne[2] == b->ne[0]);
3752

3753
    struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
3754

3755
3756
3757
3758
3759
3760
3761
3762
    int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
    memcpy(params +  5, &freq_base,    sizeof(float));
    memcpy(params +  6, &freq_scale,   sizeof(float));
    memcpy(params +  7, &ext_factor,   sizeof(float));
    memcpy(params +  8, &attn_factor,  sizeof(float));
    memcpy(params +  9, &beta_fast,    sizeof(float));
    memcpy(params + 10, &beta_slow,    sizeof(float));
    ggml_set_op_params(result, params, sizeof(params));
3763

3764
3765
3766
3767
    result->op     = GGML_OP_ROPE_BACK;
    result->src[0] = a;
    result->src[1] = b;
    result->src[2] = c;
3768
3769
3770
3771

    return result;
}

3772
// ggml_clamp
3773

3774
3775
3776
3777
3778
3779
3780
struct ggml_tensor * ggml_clamp(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        float                 min,
        float                 max) {
    // TODO: when implement backward, fix this:
    struct ggml_tensor * result = ggml_view_tensor(ctx, a);
3781

3782
3783
    float params[] = { min, max };
    ggml_set_op_params(result, params, sizeof(params));
3784

3785
3786
    result->op     = GGML_OP_CLAMP;
    result->src[0] = a;
3787

3788
    return result;
3789
3790
}

3791
// ggml_conv_1d
3792

3793
3794
static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
    return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
3795
3796
}

3797
3798
3799
3800
3801
3802
3803
3804
GGML_API struct ggml_tensor * ggml_conv_1d(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        int                   s0,
        int                   p0,
        int                   d0) {
    struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
3805

3806
3807
3808
3809
    struct ggml_tensor * result =
        ggml_mul_mat(ctx,
                ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
                ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2]));                    // [OC,IC, K] => [OC, IC * K]
3810

3811
    result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
3812

3813
    return result;
3814
3815
}

3816
3817
3818
3819
3820
3821
3822
3823
3824
// ggml_conv_1d_ph

struct ggml_tensor* ggml_conv_1d_ph(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        int                   s,
        int                   d) {
    return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
3825
3826
}

3827
// ggml_conv_transpose_1d
3828

3829
3830
3831
static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
    return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
}
3832

3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        int                   s0,
        int                   p0,
        int                   d0) {
    GGML_ASSERT(ggml_is_matrix(b));
    GGML_ASSERT(a->ne[2] == b->ne[1]);
    GGML_ASSERT(a->ne[3] == 1);
3843

3844
3845
    GGML_ASSERT(p0 == 0);
    GGML_ASSERT(d0 == 1);
3846

3847
3848
3849
3850
3851
    const int64_t ne[4] = {
        ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
        a->ne[1], b->ne[2], 1,
    };
    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
3852

3853
3854
    int32_t params[] = { s0, p0, d0 };
    ggml_set_op_params(result, params, sizeof(params));
3855

3856
3857
3858
    result->op     = GGML_OP_CONV_TRANSPOSE_1D;
    result->src[0] = a;
    result->src[1] = b;
3859

3860
3861
    return result;
}
3862

3863
// ggml_conv_depthwise
3864

3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
struct ggml_tensor * ggml_conv_depthwise_2d(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        int                   s0,
        int                   s1,
        int                   p0,
        int                   p1,
        int                   d0,
        int                   d1) {
    struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
    struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
                                        ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
                                        s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
    struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
3880

3881
3882
3883
    new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2],  new_a->ne[3], 1);                       // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
    struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
    result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
3884

3885
    return result;
3886
}
3887
// ggml_conv_2d
3888

3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
// a: [OC,IC, KH, KW]
// b: [N, IC, IH, IW]
// result: [N, OH, OW, IC*KH*KW]
struct ggml_tensor * ggml_im2col(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        int                   s0,
        int                   s1,
        int                   p0,
        int                   p1,
        int                   d0,
        int                   d1,
        bool                  is_2D,
        enum ggml_type        dst_type) {
    if(is_2D) {
        GGML_ASSERT(a->ne[2] == b->ne[2]);
    } else {
        GGML_ASSERT(a->ne[1] == b->ne[1]);
        GGML_ASSERT(b->ne[3] == 1);
3910
3911
    }

3912
3913
    const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
    const int64_t OW =         ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
3914

3915
3916
    GGML_ASSERT((!is_2D || OH > 0) && "b too small compared to a");
    GGML_ASSERT((OW > 0)           && "b too small compared to a");
3917

3918
3919
3920
3921
3922
3923
    const int64_t ne[4] = {
        is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
        OW,
        is_2D ? OH : b->ne[2],
        is_2D ?      b->ne[3] : 1,
    };
3924

3925
3926
3927
    struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
    int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
    ggml_set_op_params(result, params, sizeof(params));
3928

3929
3930
3931
3932
3933
3934
    result->op     = GGML_OP_IM2COL;
    result->src[0] = a;
    result->src[1] = b;

    return result;
}
3935

3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
struct ggml_tensor * ggml_im2col_back(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        int64_t             * ne,
        int                   s0,
        int                   s1,
        int                   p0,
        int                   p1,
        int                   d0,
        int                   d1,
        bool                  is_2D) {
    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
    int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
    ggml_set_op_params(result, params, sizeof(params));
3951

3952
3953
3954
    result->op     = GGML_OP_IM2COL_BACK;
    result->src[0] = a;
    result->src[1] = b;
3955

3956
    return result;
3957
3958
}

3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
// a: [OC,IC, KH, KW]
// b: [N, IC, IH, IW]
// result: [N, OC, OH, OW]
struct ggml_tensor * ggml_conv_2d(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        int                   s0,
        int                   s1,
        int                   p0,
        int                   p1,
        int                   d0,
        int                   d1) {
    struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, a->type); // [N, OH, OW, IC * KH * KW]
3973

3974
3975
3976
3977
    struct ggml_tensor * result =
        ggml_mul_mat(ctx,
                ggml_reshape_2d(ctx, im2col, im2col->ne[0],  im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
                ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]),  a->ne[3]));                       // [OC,IC, KH, KW] => [OC, IC * KH * KW]
3978

3979
3980
    result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
    result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
3981

3982
3983

    return result;
3984
3985
}

3986
// ggml_conv_2d_sk_p0
3987

3988
3989
3990
3991
3992
struct ggml_tensor * ggml_conv_2d_sk_p0(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
3993
3994
}

3995
// ggml_conv_2d_s1_ph
3996

3997
3998
3999
4000
4001
4002
struct ggml_tensor * ggml_conv_2d_s1_ph(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
}
4003

4004
// ggml_conv_transpose_2d_p0
4005

4006
4007
static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
    return (ins - 1) * s - 2 * p + ks;
4008
4009
}

4010
4011
4012
4013
4014
4015
struct ggml_tensor * ggml_conv_transpose_2d_p0(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        int                   stride) {
    GGML_ASSERT(a->ne[3] == b->ne[2]);
4016

4017
4018
4019
4020
4021
    const int64_t ne[4] = {
        ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
        ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
        a->ne[2], b->ne[3],
    };
4022

4023
    struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
4024

4025
    ggml_set_op_params_i32(result, 0, stride);
4026

4027
4028
4029
    result->op     = GGML_OP_CONV_TRANSPOSE_2D;
    result->src[0] = a;
    result->src[1] = b;
4030

4031
    return result;
4032
4033
}

4034
// ggml_pool_*
4035

4036
4037
4038
static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
    return (ins + 2 * p - ks) / s + 1;
}
4039

4040
// ggml_pool_1d
4041

4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
struct ggml_tensor * ggml_pool_1d(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        enum ggml_op_pool     op,
        int                   k0,
        int                   s0,
        int                   p0) {
    const int64_t ne[4] = {
        ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
        a->ne[1],
        a->ne[2],
        a->ne[3],
    };
    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
4056

4057
4058
    int32_t params[] = { op, k0, s0, p0 };
    ggml_set_op_params(result, params, sizeof(params));
4059

4060
4061
    result->op     = GGML_OP_POOL_1D;
    result->src[0] = a;
4062

4063
    return result;
4064
4065
}

4066
// ggml_pool_2d
4067

4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
struct ggml_tensor * ggml_pool_2d(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        enum ggml_op_pool     op,
        int                   k0,
        int                   k1,
        int                   s0,
        int                   s1,
        float                 p0,
        float                 p1) {
    struct ggml_tensor * result;
    const int64_t ne[4] = {
        ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
        ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
        a->ne[2],
        a->ne[3],
    };
    result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
4086

4087
4088
4089
4090
4091
4092
4093
    int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
    ggml_set_op_params(result, params, sizeof(params));

    result->op     = GGML_OP_POOL_2D;
    result->src[0] = a;

    return result;
4094
4095
}

4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
struct ggml_tensor * ggml_pool_2d_back(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * af,
        enum ggml_op_pool     op,
        int                   k0,
        int                   k1,
        int                   s0,
        int                   s1,
        float                 p0,
        float                 p1) {
    struct ggml_tensor * result;
    result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, af->ne);

    int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
    ggml_set_op_params(result, params, sizeof(params));

    result->op     = GGML_OP_POOL_2D_BACK;
    result->src[0] = a;
    result->src[1] = af;

    return result;
}
4119

4120
// ggml_upscale
4121

4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
static struct ggml_tensor * ggml_upscale_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   ne0,
        int                   ne1,
        int                   ne2,
        int                   ne3) {
    GGML_ASSERT(a->ne[0] <= ne0);
    GGML_ASSERT(a->ne[1] <= ne1);
    GGML_ASSERT(a->ne[2] <= ne2);
    GGML_ASSERT(a->ne[3] <= ne3);
4133

4134
    struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
4135

4136
4137
    result->op     = GGML_OP_UPSCALE;
    result->src[0] = a;
4138

4139
4140
    return result;
}
4141

4142
4143
4144
4145
4146
4147
struct ggml_tensor * ggml_upscale(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   scale_factor) {
    return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
}
4148

4149
4150
4151
4152
4153
4154
4155
4156
struct ggml_tensor * ggml_upscale_ext(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   ne0,
        int                   ne1,
        int                   ne2,
        int                   ne3) {
    return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
4157
4158
}

4159
// ggml_pad
4160

4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
struct ggml_tensor * ggml_pad(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   p0,
        int                   p1,
        int                   p2,
        int                   p3) {
    struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
            a->ne[0] + p0,
            a->ne[1] + p1,
            a->ne[2] + p2,
            a->ne[3] + p3);
4173

4174
4175
    result->op     = GGML_OP_PAD;
    result->src[0] = a;
4176

4177
    return result;
4178
4179
}

4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
// ggml_pad_reflect_1d

struct ggml_tensor * ggml_pad_reflect_1d(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   p0,
        int                   p1) {
    GGML_ASSERT(p0 >= 0);
    GGML_ASSERT(p1 >= 0);

    GGML_ASSERT(p0 < a->ne[0]); // padding length on each size must be less than the
    GGML_ASSERT(p1 < a->ne[0]); // existing length of the dimension being padded

    GGML_ASSERT(ggml_is_contiguous(a));
    GGML_ASSERT(a->type == GGML_TYPE_F32);

    struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
            a->ne[0] + p0 + p1,
            a->ne[1],
            a->ne[2],
            a->ne[3]);

    int32_t params[] = { p0, p1 };
    ggml_set_op_params(result, params, sizeof(params));

    result->op     = GGML_OP_PAD_REFLECT_1D;
    result->src[0] = a;

    return result;
}

4211
// ggml_unpad
4212

4213
4214
4215
4216
struct ggml_tensor * ggml_unpad(
    struct ggml_context * ctx,
    struct ggml_tensor  * a,
    int p0, int p1, int p2, int p3) {
4217

4218
4219
4220
4221
4222
    struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
            a->ne[0] - p0,
            a->ne[1] - p1,
            a->ne[2] - p2,
            a->ne[3] - p3);
4223

4224
4225
    result->op = GGML_OP_UNPAD;
    result->src[0] = a;
4226

4227
4228
    return result;
}
4229

4230
// ggml_arange
4231

4232
4233
4234
4235
4236
4237
struct ggml_tensor * ggml_arange(
        struct ggml_context * ctx,
        float                 start,
        float                 stop,
        float                 step) {
    GGML_ASSERT(stop > start);
4238

4239
    const int64_t steps = (int64_t) ceilf((stop - start) / step);
4240

4241
    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
4242

4243
4244
4245
    ggml_set_op_params_f32(result, 0, start);
    ggml_set_op_params_f32(result, 1, stop);
    ggml_set_op_params_f32(result, 2, step);
4246

4247
    result->op = GGML_OP_ARANGE;
4248

4249
4250
    return result;
}
4251

4252
// ggml_timestep_embedding
4253

4254
4255
4256
4257
4258
4259
4260
4261
struct ggml_tensor * ggml_timestep_embedding(
        struct ggml_context * ctx,
        struct ggml_tensor  * timesteps,
        int                   dim,
        int                   max_period) {
    int actual_dim = dim;
    if (dim % 2 != 0) {
        actual_dim = dim + 1;
4262
4263
    }

4264
    struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
4265

4266
4267
    ggml_set_op_params_i32(result, 0, dim);
    ggml_set_op_params_i32(result, 1, max_period);
4268

4269
4270
    result->op     = GGML_OP_TIMESTEP_EMBEDDING;
    result->src[0] = timesteps;
4271

4272
4273
    return result;
}
4274

4275
// ggml_argsort
4276

4277
4278
4279
4280
4281
4282
struct ggml_tensor * ggml_argsort(
        struct ggml_context  * ctx,
        struct ggml_tensor   * a,
        enum ggml_sort_order   order) {
    GGML_ASSERT(a->ne[0] <= INT32_MAX);
    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
4283

4284
    ggml_set_op_params_i32(result, 0, (int32_t) order);
4285

4286
4287
    result->op     = GGML_OP_ARGSORT;
    result->src[0] = a;
4288

4289
4290
    return result;
}
4291

4292
// ggml_top_k
4293

4294
4295
4296
4297
4298
struct ggml_tensor * ggml_top_k(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   k) {
    GGML_ASSERT(a->ne[0] >= k);
4299

4300
    struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
4301

4302
4303
4304
4305
    result = ggml_view_4d(ctx, result,
                k, result->ne[1], result->ne[2], result->ne[3],
                   result->nb[1], result->nb[2], result->nb[3],
                0);
4306

4307
    return result;
4308
4309
}

4310
// ggml_flash_attn_ext
4311

4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
struct ggml_tensor * ggml_flash_attn_ext(
        struct ggml_context * ctx,
        struct ggml_tensor  * q,
        struct ggml_tensor  * k,
        struct ggml_tensor  * v,
        struct ggml_tensor  * mask,
        float                 scale,
        float                 max_bias,
        float                 logit_softcap) {
    GGML_ASSERT(ggml_can_mul_mat(k, q));
    // TODO: check if vT can be multiplied by (k*qT)
4323

4324
4325
4326
4327
4328
4329
4330
    if (mask) {
        GGML_ASSERT(ggml_is_contiguous(mask));
        GGML_ASSERT(mask->ne[2] == 1);
        GGML_ASSERT(mask->ne[3] == 1);
        GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
                "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
        //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
4331
4332
    }

4333
4334
    if (max_bias > 0.0f) {
        GGML_ASSERT(mask);
4335
4336
    }

4337
4338
4339
4340
4341
4342
    // permute(0, 2, 1, 3)
    int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);

    float params[] = { scale, max_bias, logit_softcap };
    ggml_set_op_params(result, params, sizeof(params));
4343

4344
4345
4346
4347
4348
    result->op     = GGML_OP_FLASH_ATTN_EXT;
    result->src[0] = q;
    result->src[1] = k;
    result->src[2] = v;
    result->src[3] = mask;
4349

4350
    return result;
4351
4352
}

4353
4354
4355
4356
void ggml_flash_attn_ext_set_prec(
        struct ggml_tensor * a,
        enum ggml_prec       prec) {
    GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
4357

4358
    const int32_t prec_i32 = (int32_t) prec;
4359

4360
    ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
4361
4362
}

4363
4364
4365
enum ggml_prec ggml_flash_attn_ext_get_prec(
        const struct ggml_tensor * a) {
    GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
4366

4367
    const int32_t prec_i32 = ggml_get_op_params_i32(a, 3);
4368

4369
4370
    return (enum ggml_prec) prec_i32;
}
4371

4372
// ggml_flash_attn_back
4373

4374
4375
4376
4377
4378
4379
4380
4381
struct ggml_tensor * ggml_flash_attn_back(
        struct ggml_context * ctx,
        struct ggml_tensor  * q,
        struct ggml_tensor  * k,
        struct ggml_tensor  * v,
        struct ggml_tensor  * d,
        bool                  masked) {
    GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes");
4382

4383
4384
    GGML_ASSERT(ggml_can_mul_mat(k, q));
    // TODO: check if vT can be multiplied by (k*qT)
4385

4386
4387
4388
4389
    // d shape [D,N,ne2,ne3]
    // q shape [D,N,ne2,ne3]
    // k shape [D,M,kvne2,ne3]
    // v shape [M,D,kvne2,ne3]
4390

4391
4392
4393
4394
4395
4396
    const int64_t     D = q->ne[0];
    const int64_t     N = q->ne[1];
    const int64_t     M = k->ne[1];
    const int64_t   ne2 = q->ne[2];
    const int64_t   ne3 = q->ne[3];
    const int64_t kvne2 = k->ne[2];
4397

4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
    GGML_ASSERT(k->ne[0] == D);
    GGML_ASSERT(v->ne[0] == M);
    GGML_ASSERT(v->ne[1] == D);
    GGML_ASSERT(d->ne[0] == D);
    GGML_ASSERT(d->ne[1] == N);
    GGML_ASSERT(k->ne[2] == kvne2);
    GGML_ASSERT(k->ne[3] == ne3);
    GGML_ASSERT(v->ne[2] == kvne2);
    GGML_ASSERT(v->ne[3] == ne3);
    GGML_ASSERT(d->ne[2] == ne2);
    GGML_ASSERT(d->ne[3] == ne3);
4409

4410
    GGML_ASSERT(ne2 % kvne2 == 0);
4411

4412
4413
4414
4415
4416
    // store gradients of q, k and v as continuous tensors concatenated in result.
    // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
    const int64_t elem_q = ggml_nelements(q);
    const int64_t elem_k = ggml_nelements(k);
    const int64_t elem_v = ggml_nelements(v);
4417

4418
4419
4420
    enum ggml_type result_type = GGML_TYPE_F32;
    GGML_ASSERT(ggml_blck_size(result_type) == 1);
    const size_t tsize = ggml_type_size(result_type);
4421

4422
4423
4424
4425
    const size_t offs_q = 0;
    const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
    const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
    const size_t end    = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
4426

4427
    const size_t nelements = (end + tsize - 1)/tsize;
4428

4429
    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
4430

4431
4432
    int32_t masked_i = masked ? 1 : 0;
    ggml_set_op_params(result, &masked_i, sizeof(masked_i));
4433

4434
4435
4436
4437
4438
    result->op     = GGML_OP_FLASH_ATTN_BACK;
    result->src[0] = q;
    result->src[1] = k;
    result->src[2] = v;
    result->src[3] = d;
4439

4440
    return result;
4441
4442
}

4443
// ggml_ssm_conv
4444

4445
4446
4447
4448
4449
4450
struct ggml_tensor * ggml_ssm_conv(
        struct ggml_context * ctx,
        struct ggml_tensor  * sx,
        struct ggml_tensor  * c) {
    GGML_ASSERT(ggml_is_3d(sx));
    GGML_ASSERT(ggml_is_matrix(c));
4451

4452
4453
4454
4455
    const int64_t d_conv  = c->ne[0];
    const int64_t d_inner = c->ne[1];
    const int64_t n_t     = sx->ne[0] - d_conv + 1; // tokens per sequence
    const int64_t n_s     = sx->ne[2];
4456

4457
4458
4459
4460
4461
    // TODO: maybe support other strides than 1?
    // FIXME: this is always true?
    GGML_ASSERT(sx->ne[0] == d_conv - 1 + n_t);
    GGML_ASSERT(sx->ne[1] == d_inner);
    GGML_ASSERT(n_t >= 0);
4462

4463
    struct ggml_tensor * result = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_t, n_s);
4464

4465
4466
4467
    result->op     = GGML_OP_SSM_CONV;
    result->src[0] = sx;
    result->src[1] = c;
4468

4469
4470
    return result;
}
4471

4472
// ggml_ssm_scan
4473

4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
struct ggml_tensor * ggml_ssm_scan(
        struct ggml_context * ctx,
        struct ggml_tensor  * s,
        struct ggml_tensor  * x,
        struct ggml_tensor  * dt,
        struct ggml_tensor  * A,
        struct ggml_tensor  * B,
        struct ggml_tensor  * C) {
    GGML_ASSERT(ggml_is_contiguous(s));
    GGML_ASSERT(ggml_is_contiguous(x));
    GGML_ASSERT(ggml_is_contiguous(dt));
    GGML_ASSERT(ggml_is_contiguous(A));
    GGML_ASSERT(ggml_is_matrix(A));
    GGML_ASSERT(ggml_is_3d(B));
    GGML_ASSERT(ggml_is_3d(s));
    GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
    GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
    GGML_ASSERT(ggml_are_same_shape(x, dt));
    GGML_ASSERT(ggml_are_same_shape(B, C));
4493

4494
4495
4496
4497
4498
    {
        const int64_t d_state      = s->ne[0];
        const int64_t d_inner      = s->ne[1];
        const int64_t n_seq_tokens = x->ne[1];
        const int64_t n_seqs       = x->ne[2];
4499

4500
4501
4502
4503
4504
4505
4506
        GGML_ASSERT(s->ne[2] == n_seqs);
        GGML_ASSERT(x->ne[0] == d_inner);
        GGML_ASSERT(A->ne[0] == d_state);
        GGML_ASSERT(A->ne[1] == d_inner);
        GGML_ASSERT(B->ne[0] == d_state);
        GGML_ASSERT(B->ne[1] == n_seq_tokens);
        GGML_ASSERT(B->ne[2] == n_seqs);
4507
4508
    }

4509
4510
    // concatenated y + ssm_states
    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
4511

4512
4513
4514
4515
4516
4517
4518
    result->op   = GGML_OP_SSM_SCAN;
    result->src[0] = s;
    result->src[1] = x;
    result->src[2] = dt;
    result->src[3] = A;
    result->src[4] = B;
    result->src[5] = C;
4519

4520
    return result;
4521
4522
}

4523
// ggml_win_part
4524

4525
4526
4527
4528
4529
4530
struct ggml_tensor * ggml_win_part(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   w) {
    GGML_ASSERT(a->ne[3] == 1);
    GGML_ASSERT(a->type  == GGML_TYPE_F32);
4531

4532
4533
4534
    // padding
    const int px = (w - a->ne[1]%w)%w;
    const int py = (w - a->ne[2]%w)%w;
4535

4536
4537
4538
    const int npx = (px + a->ne[1])/w;
    const int npy = (py + a->ne[2])/w;
    const int np  = npx*npy;
4539

4540
4541
    const int64_t ne[4] = { a->ne[0], w, w, np, };
    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
4542

4543
4544
    int32_t params[] = { npx, npy, w };
    ggml_set_op_params(result, params, sizeof(params));
4545

4546
4547
    result->op     = GGML_OP_WIN_PART;
    result->src[0] = a;
4548

4549
4550
    return result;
}
4551

4552
// ggml_win_unpart
4553

4554
4555
4556
4557
4558
4559
4560
struct ggml_tensor * ggml_win_unpart(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   w0,
        int                   h0,
        int                   w) {
    GGML_ASSERT(a->type == GGML_TYPE_F32);
4561

4562
4563
    const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
4564

4565
4566
    int32_t params[] = { w };
    ggml_set_op_params(result, params, sizeof(params));
4567

4568
4569
    result->op     = GGML_OP_WIN_UNPART;
    result->src[0] = a;
4570

4571
    return result;
4572
4573
}

4574
4575
4576
4577
4578
4579
4580
4581
4582
// ggml_get_rel_pos

struct ggml_tensor * ggml_get_rel_pos(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        int                   qh,
        int                   kh) {
    GGML_ASSERT(qh == kh);
    GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
4583

4584
4585
    const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
4586

4587
4588
    result->op     = GGML_OP_GET_REL_POS;
    result->src[0] = a;
4589

4590
    return result;
4591
4592
}

4593
// ggml_add_rel_pos
4594

4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
static struct ggml_tensor * ggml_add_rel_pos_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * pw,
        struct ggml_tensor  * ph,
        bool                  inplace) {
    GGML_ASSERT(ggml_are_same_shape(pw, ph));
    GGML_ASSERT(ggml_is_contiguous(a));
    GGML_ASSERT(ggml_is_contiguous(pw));
    GGML_ASSERT(ggml_is_contiguous(ph));
    GGML_ASSERT(ph->type == GGML_TYPE_F32);
    GGML_ASSERT(pw->type == GGML_TYPE_F32);
    GGML_ASSERT(pw->ne[3] == a->ne[2]);
    GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
    GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
4610

4611
4612
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
    ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
4613

4614
4615
4616
4617
    result->op     = GGML_OP_ADD_REL_POS;
    result->src[0] = a;
    result->src[1] = pw;
    result->src[2] = ph;
4618

4619
    return result;
4620
4621
}

4622
4623
4624
4625
4626
4627
struct ggml_tensor * ggml_add_rel_pos(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * pw,
        struct ggml_tensor  * ph) {
    return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
4628
4629
}

4630
4631
4632
4633
4634
4635
struct ggml_tensor * ggml_add_rel_pos_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * pw,
        struct ggml_tensor  * ph) {
    return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
4636
4637
}

4638
// ggml_rwkv_wkv6
4639

4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
struct ggml_tensor * ggml_rwkv_wkv6(
        struct ggml_context * ctx,
        struct ggml_tensor  * k,
        struct ggml_tensor  * v,
        struct ggml_tensor  * r,
        struct ggml_tensor  * tf,
        struct ggml_tensor  * td,
        struct ggml_tensor  * state) {
    GGML_ASSERT(ggml_is_contiguous(k));
    GGML_ASSERT(ggml_is_contiguous(v));
    GGML_ASSERT(ggml_is_contiguous(r));
    GGML_ASSERT(ggml_is_contiguous(tf));
    GGML_ASSERT(ggml_is_contiguous(td));
    GGML_ASSERT(ggml_is_contiguous(state));
4654

4655
4656
4657
4658
    const int64_t S = k->ne[0];
    const int64_t H = k->ne[2];
    const int64_t n_tokens = k->ne[3];
    const int64_t n_seqs = state->ne[1];
4659
    {
4660
4661
4662
4663
4664
4665
4666
        GGML_ASSERT(k->ne[1] == 1);
        GGML_ASSERT(v->ne[0] == 1 && v->ne[1] == S && v->ne[2] == H && v->ne[3] == n_tokens);
        GGML_ASSERT(r->ne[0] == 1 && r->ne[1] == S && r->ne[2] == H && r->ne[3] == n_tokens);
        // TODO: RWKV v4 and v5
        GGML_ASSERT(td->ne[0] == 1 && td->ne[1] == S && td->ne[2] == H && td->ne[3] == n_tokens);
        GGML_ASSERT(ggml_nelements(state) == S * S * H * n_seqs);
    }
4667

4668
4669
4670
    // concat output and new_state
    const int64_t ne[4] = { S * H, n_tokens + S * n_seqs, 1, 1 };
    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
4671

4672
4673
4674
4675
4676
4677
4678
    result->op     = GGML_OP_RWKV_WKV6;
    result->src[0] = k;
    result->src[1] = v;
    result->src[2] = r;
    result->src[3] = tf;
    result->src[4] = td;
    result->src[5] = state;
4679

4680
4681
    return result;
}
4682

4683
// ggml_unary
4684

4685
4686
4687
4688
4689
4690
static struct ggml_tensor * ggml_unary_impl(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        enum ggml_unary_op    op,
        bool                  inplace) {
    GGML_ASSERT(ggml_is_contiguous_1(a));
4691

4692
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
4693

4694
    ggml_set_op_params_i32(result, 0, (int32_t) op);
4695

4696
4697
    result->op     = GGML_OP_UNARY;
    result->src[0] = a;
4698

4699
4700
    return result;
}
4701

4702
4703
4704
4705
4706
4707
struct ggml_tensor * ggml_unary(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        enum ggml_unary_op    op) {
    return ggml_unary_impl(ctx, a, op, false);
}
4708

4709
4710
4711
4712
4713
4714
struct ggml_tensor * ggml_unary_inplace(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        enum ggml_unary_op    op) {
    return ggml_unary_impl(ctx, a, op, true);
}
4715

4716
// ggml_map_unary
4717

4718
4719
4720
4721
4722
4723
static struct ggml_tensor * ggml_map_unary_impl_f32(
        struct ggml_context        * ctx,
        struct ggml_tensor         * a,
        const  ggml_unary_op_f32_t   fun,
        bool                         inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
4724

4725
    ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
4726

4727
4728
    result->op     = GGML_OP_MAP_UNARY;
    result->src[0] = a;
4729

4730
4731
    return result;
}
4732

4733
4734
4735
4736
4737
4738
struct ggml_tensor * ggml_map_unary_f32(
        struct ggml_context        * ctx,
        struct ggml_tensor         * a,
        const  ggml_unary_op_f32_t   fun) {
    return ggml_map_unary_impl_f32(ctx, a, fun, false);
}
4739

4740
4741
4742
4743
4744
4745
struct ggml_tensor * ggml_map_unary_inplace_f32(
        struct ggml_context        * ctx,
        struct ggml_tensor         * a,
        const  ggml_unary_op_f32_t   fun) {
    return ggml_map_unary_impl_f32(ctx, a, fun, true);
}
4746

4747
// ggml_map_binary
4748

4749
4750
4751
4752
4753
4754
4755
static struct ggml_tensor * ggml_map_binary_impl_f32(
        struct ggml_context         * ctx,
        struct ggml_tensor          * a,
        struct ggml_tensor          * b,
        const  ggml_binary_op_f32_t   fun,
        bool                          inplace) {
    GGML_ASSERT(ggml_are_same_shape(a, b));
4756

4757
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
4758

4759
    ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
4760

4761
4762
4763
    result->op     = GGML_OP_MAP_BINARY;
    result->src[0] = a;
    result->src[1] = b;
4764

4765
4766
    return result;
}
4767

4768
4769
4770
4771
4772
4773
4774
struct ggml_tensor * ggml_map_binary_f32(
        struct ggml_context         * ctx,
        struct ggml_tensor          * a,
        struct ggml_tensor          * b,
        const  ggml_binary_op_f32_t   fun) {
    return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
}
4775

4776
4777
4778
4779
4780
4781
4782
struct ggml_tensor * ggml_map_binary_inplace_f32(
        struct ggml_context         * ctx,
        struct ggml_tensor          * a,
        struct ggml_tensor          * b,
        const  ggml_binary_op_f32_t   fun) {
    return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
}
4783

4784
// ggml_map_custom1_f32
4785

4786
4787
4788
4789
4790
4791
static struct ggml_tensor * ggml_map_custom1_impl_f32(
        struct ggml_context          * ctx,
        struct ggml_tensor           * a,
        const  ggml_custom1_op_f32_t   fun,
        bool                           inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
4792

4793
    ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
4794

4795
4796
    result->op     = GGML_OP_MAP_CUSTOM1_F32;
    result->src[0] = a;
4797

4798
4799
    return result;
}
4800

4801
4802
4803
4804
4805
struct ggml_tensor * ggml_map_custom1_f32(
        struct ggml_context          * ctx,
        struct ggml_tensor           * a,
        const  ggml_custom1_op_f32_t   fun) {
    return ggml_map_custom1_impl_f32(ctx, a, fun, false);
4806
4807
}

4808
4809
4810
4811
4812
4813
struct ggml_tensor * ggml_map_custom1_inplace_f32(
        struct ggml_context          * ctx,
        struct ggml_tensor           * a,
        const  ggml_custom1_op_f32_t   fun) {
    return ggml_map_custom1_impl_f32(ctx, a, fun, true);
}
4814

4815
// ggml_map_custom2_f32
4816

4817
4818
4819
4820
4821
4822
4823
static struct ggml_tensor * ggml_map_custom2_impl_f32(
        struct ggml_context          * ctx,
        struct ggml_tensor           * a,
        struct ggml_tensor           * b,
        const  ggml_custom2_op_f32_t   fun,
        bool                           inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
4824

4825
    ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
4826

4827
4828
4829
    result->op     = GGML_OP_MAP_CUSTOM2_F32;
    result->src[0] = a;
    result->src[1] = b;
4830

4831
4832
    return result;
}
4833

4834
4835
4836
4837
4838
4839
4840
struct ggml_tensor * ggml_map_custom2_f32(
        struct ggml_context          * ctx,
        struct ggml_tensor           * a,
        struct ggml_tensor           * b,
        const  ggml_custom2_op_f32_t   fun) {
    return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
}
4841

4842
4843
4844
4845
4846
4847
4848
struct ggml_tensor * ggml_map_custom2_inplace_f32(
        struct ggml_context          * ctx,
        struct ggml_tensor           * a,
        struct ggml_tensor           * b,
        const  ggml_custom2_op_f32_t   fun) {
    return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
}
4849

4850
// ggml_map_custom3_f32
4851

4852
4853
4854
4855
4856
4857
4858
4859
static struct ggml_tensor * ggml_map_custom3_impl_f32(
        struct ggml_context          * ctx,
        struct ggml_tensor           * a,
        struct ggml_tensor           * b,
        struct ggml_tensor           * c,
        const  ggml_custom3_op_f32_t   fun,
        bool                           inplace) {
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
4860

4861
    ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
4862

4863
4864
4865
4866
    result->op     = GGML_OP_MAP_CUSTOM3_F32;
    result->src[0] = a;
    result->src[1] = b;
    result->src[2] = c;
4867

4868
4869
    return result;
}
4870

4871
4872
4873
4874
4875
4876
4877
4878
struct ggml_tensor * ggml_map_custom3_f32(
        struct ggml_context          * ctx,
        struct ggml_tensor           * a,
        struct ggml_tensor           * b,
        struct ggml_tensor           * c,
        const  ggml_custom3_op_f32_t   fun) {
    return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
}
4879

4880
4881
4882
4883
4884
4885
4886
4887
struct ggml_tensor * ggml_map_custom3_inplace_f32(
        struct ggml_context          * ctx,
        struct ggml_tensor           * a,
        struct ggml_tensor           * b,
        struct ggml_tensor           * c,
        const  ggml_custom3_op_f32_t   fun) {
    return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
}
4888

4889
// ggml_map_custom1
4890

4891
4892
4893
4894
4895
4896
4897
4898
static struct ggml_tensor * ggml_map_custom1_impl(
        struct ggml_context      * ctx,
        struct ggml_tensor       * a,
        const  ggml_custom1_op_t   fun,
        int                        n_tasks,
        void                     * userdata,
        bool                       inplace) {
    GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
4899

4900
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
4901

4902
4903
4904
4905
4906
4907
    struct ggml_map_custom1_op_params params = {
        /*.fun      =*/ fun,
        /*.n_tasks  =*/ n_tasks,
        /*.userdata =*/ userdata
    };
    ggml_set_op_params(result, (const void *) &params, sizeof(params));
4908

4909
4910
    result->op     = GGML_OP_MAP_CUSTOM1;
    result->src[0] = a;
4911

4912
4913
    return result;
}
4914

4915
4916
4917
4918
4919
4920
4921
4922
struct ggml_tensor * ggml_map_custom1(
        struct ggml_context      * ctx,
        struct ggml_tensor       * a,
        const  ggml_custom1_op_t   fun,
        int                        n_tasks,
        void                     * userdata) {
    return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
}
4923

4924
4925
4926
4927
4928
4929
4930
4931
struct ggml_tensor * ggml_map_custom1_inplace(
        struct ggml_context      * ctx,
        struct ggml_tensor       * a,
        const  ggml_custom1_op_t   fun,
        int                        n_tasks,
        void                     * userdata) {
    return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
}
4932

4933
// ggml_map_custom2
4934

4935
4936
4937
4938
4939
4940
4941
4942
4943
static struct ggml_tensor * ggml_map_custom2_impl(
        struct ggml_context      * ctx,
        struct ggml_tensor       * a,
        struct ggml_tensor       * b,
        const  ggml_custom2_op_t   fun,
        int                        n_tasks,
        void                     * userdata,
        bool                       inplace) {
    GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
4944

4945
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
4946

4947
4948
4949
4950
4951
4952
    struct ggml_map_custom2_op_params params = {
        /*.fun      =*/ fun,
        /*.n_tasks  =*/ n_tasks,
        /*.userdata =*/ userdata
    };
    ggml_set_op_params(result, (const void *) &params, sizeof(params));
4953

4954
4955
4956
    result->op     = GGML_OP_MAP_CUSTOM2;
    result->src[0] = a;
    result->src[1] = b;
4957

4958
4959
    return result;
}
4960

4961
4962
4963
4964
4965
4966
4967
4968
4969
struct ggml_tensor * ggml_map_custom2(
        struct ggml_context      * ctx,
        struct ggml_tensor       * a,
        struct ggml_tensor       * b,
        const  ggml_custom2_op_t   fun,
        int                        n_tasks,
        void                     * userdata) {
    return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
}
4970

4971
4972
4973
4974
4975
4976
4977
4978
4979
struct ggml_tensor * ggml_map_custom2_inplace(
        struct ggml_context      * ctx,
        struct ggml_tensor       * a,
        struct ggml_tensor       * b,
        const  ggml_custom2_op_t   fun,
        int                        n_tasks,
        void                     * userdata) {
    return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
}
4980

4981
// ggml_map_custom3
4982

4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
static struct ggml_tensor * ggml_map_custom3_impl(
        struct ggml_context      * ctx,
        struct ggml_tensor       * a,
        struct ggml_tensor       * b,
        struct ggml_tensor       * c,
        const  ggml_custom3_op_t   fun,
        int                        n_tasks,
        void                     * userdata,
        bool                       inplace) {
    GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
4993

4994
    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
4995

4996
4997
4998
4999
5000
5001
    struct ggml_map_custom3_op_params params = {
        /*.fun      =*/ fun,
        /*.n_tasks  =*/ n_tasks,
        /*.userdata =*/ userdata
    };
    ggml_set_op_params(result, (const void *) &params, sizeof(params));
5002

5003
5004
5005
5006
    result->op     = GGML_OP_MAP_CUSTOM3;
    result->src[0] = a;
    result->src[1] = b;
    result->src[2] = c;
5007

5008
5009
    return result;
}
5010

5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
struct ggml_tensor * ggml_map_custom3(
        struct ggml_context      * ctx,
        struct ggml_tensor       * a,
        struct ggml_tensor       * b,
        struct ggml_tensor       * c,
        const  ggml_custom3_op_t   fun,
        int                        n_tasks,
        void                     * userdata) {
    return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
}
5021

5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
struct ggml_tensor * ggml_map_custom3_inplace(
        struct ggml_context      * ctx,
        struct ggml_tensor       * a,
        struct ggml_tensor       * b,
        struct ggml_tensor       * c,
        const  ggml_custom3_op_t   fun,
        int                        n_tasks,
        void                     * userdata) {
    return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
}
5032

5033
// ggml_cross_entropy_loss
5034

5035
5036
5037
5038
5039
struct ggml_tensor * ggml_cross_entropy_loss(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b) {
    GGML_ASSERT(ggml_are_same_shape(a, b));
5040

5041
    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
5042

5043
5044
5045
    result->op     = GGML_OP_CROSS_ENTROPY_LOSS;
    result->src[0] = a;
    result->src[1] = b;
5046

5047
5048
    return result;
}
5049

5050
// ggml_cross_entropy_loss_back
5051

5052
5053
5054
5055
5056
5057
5058
struct ggml_tensor * ggml_cross_entropy_loss_back(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * b,
        struct ggml_tensor  * c) {
    GGML_ASSERT(ggml_are_same_shape(a, b));
    GGML_ASSERT(ggml_is_scalar(c));
5059

5060
    struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
5061

5062
5063
5064
5065
    result->op     = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
    result->src[0] = a;
    result->src[1] = b;
    result->src[2] = c;
5066

5067
5068
    return result;
}
5069

5070
// opt_step_adamw
5071

5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
struct ggml_tensor * ggml_opt_step_adamw(
        struct ggml_context * ctx,
        struct ggml_tensor  * a,
        struct ggml_tensor  * grad,
        struct ggml_tensor  * m,
        struct ggml_tensor  * v,
        struct ggml_tensor  * adamw_params) {
    GGML_ASSERT(a->flags & GGML_TENSOR_FLAG_PARAM);
    GGML_ASSERT(ggml_are_same_shape(a, grad));
    GGML_ASSERT(ggml_are_same_shape(a, m));
    GGML_ASSERT(ggml_are_same_shape(a, v));
    GGML_ASSERT(adamw_params->type == GGML_TYPE_F32);
    GGML_ASSERT(ggml_nelements(adamw_params) == 7);
5085

5086
    struct ggml_tensor * result = ggml_view_tensor(ctx, a);
5087

5088
5089
5090
5091
5092
5093
    result->op     = GGML_OP_OPT_STEP_ADAMW;
    result->src[0] = a;
    result->src[1] = grad;
    result->src[2] = m;
    result->src[3] = v;
    result->src[4] = adamw_params;
5094

5095
5096
    return result;
}
5097

5098
////////////////////////////////////////////////////////////////////////////////
5099

5100
5101
5102
5103
5104
5105
5106
5107
struct ggml_hash_set ggml_hash_set_new(size_t size) {
    size = ggml_hash_size(size);
    struct ggml_hash_set result;
    result.size = size;
    result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
    result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t));
    return result;
}
5108

5109
5110
5111
void ggml_hash_set_reset(struct ggml_hash_set * hash_set) {
    memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size));
}
5112

5113
5114
5115
5116
void ggml_hash_set_free(struct ggml_hash_set * hash_set) {
    GGML_FREE(hash_set->used);
    GGML_FREE(hash_set->keys);
}
5117

5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
size_t ggml_hash_size(size_t min_sz) {
    // next primes after powers of two
    static const size_t primes[] = {
        2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
        2053, 4099, 8209, 16411, 32771, 65537, 131101,
        262147, 524309, 1048583, 2097169, 4194319, 8388617,
        16777259, 33554467, 67108879, 134217757, 268435459,
        536870923, 1073741827, 2147483659
    };
    static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
5128

5129
5130
5131
5132
5133
5134
5135
5136
5137
    // find the smallest prime that is larger or equal than min_sz
    size_t l = 0;
    size_t r = n_primes;
    while (l < r) {
        size_t m = (l + r)/2;
        if (primes[m] < min_sz) {
            l = m + 1;
        } else {
            r = m;
5138
5139
        }
    }
5140
5141
5142
5143
5144
5145
5146
5147
    size_t sz = l < n_primes ? primes[l] : min_sz | 1;
    return sz;
}

struct hash_map {
    struct ggml_hash_set set;
    struct ggml_tensor ** vals;
};
5148

5149
5150
5151
5152
static struct hash_map * ggml_new_hash_map(size_t size) {
    struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
    result->set = ggml_hash_set_new(size);
    result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *));
5153
5154
5155
    return result;
}

5156
5157
5158
5159
5160
static void ggml_hash_map_free(struct hash_map * map) {
    ggml_hash_set_free(&map->set);
    GGML_FREE(map->vals);
    GGML_FREE(map);
}
5161

5162
5163
5164
5165
5166
5167
// utility functions to change gradients
// isrc is the index of tensor in cgraph->visited_has_set.keys
// the corresponding gradient (accumulators) are also at position isrc
// if tensor has a gradient accumulator, modify that accumulator in-place
// else if there is no gradient for tensor, set the corresponding value
// else, just add/subtract/etc. the gradients
5168

5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
static void ggml_add_or_set(
        struct ggml_context * ctx,
        struct ggml_cgraph  * cgraph,
        size_t                isrc,
        struct ggml_tensor  * tensor) {
    struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
    GGML_ASSERT(src);
    if (cgraph->grads[isrc]) {
        cgraph->grads[isrc] = ggml_add_impl(ctx, cgraph->grads[isrc], tensor, /*inplace =*/ cgraph->grad_accs[isrc]);
    } else {
        cgraph->grads[isrc] = tensor;
5180
    }
5181
5182
5183
    ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
    ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
}
5184

5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
static void ggml_acc_or_set(
        struct ggml_context * ctx,
        struct ggml_cgraph  * cgraph,
        size_t                isrc,
        struct ggml_tensor  * tensor,
        const  size_t         nb1,
        const  size_t         nb2,
        const  size_t         nb3,
        const  size_t         offset) {
    struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
    GGML_ASSERT(src);
    if (cgraph->grads[isrc]) {
        cgraph->grads[isrc] = ggml_acc_impl(ctx, cgraph->grads[isrc], tensor, nb1, nb2, nb3, offset, cgraph->grad_accs[isrc]);
    } else {
        struct ggml_tensor * a_zero = ggml_scale(ctx, src, 0.0f); // FIXME this is going to produce NaN if a contains inf/NaN
        cgraph->grads[isrc] = ggml_acc_impl(ctx, a_zero, tensor, nb1, nb2, nb3, offset, false);
5201
    }
5202
5203
    ggml_format_name(cgraph->grads[isrc], "grad for %s", cgraph->visited_hash_set.keys[isrc]->name);
    ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
5204
5205
}

5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
static void ggml_add1_or_set(
        struct ggml_context * ctx,
        struct ggml_cgraph  * cgraph,
        size_t                isrc,
        struct ggml_tensor  * tensor) {
    struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
    GGML_ASSERT(src);
    if (cgraph->grads[isrc]) {
        cgraph->grads[isrc] = ggml_add1_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
    } else {
        cgraph->grads[isrc] = ggml_repeat(ctx, tensor, src);
5217
    }
5218
5219
5220
    ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
    ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
}
5221

5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
static void ggml_sub_or_set(
        struct ggml_context * ctx,
        struct ggml_cgraph  * cgraph,
        size_t                isrc,
        struct ggml_tensor  * tensor) {
    struct ggml_tensor * src = cgraph->visited_hash_set.keys[isrc];
    GGML_ASSERT(src);
    if (cgraph->grads[isrc]) {
        cgraph->grads[isrc] = ggml_sub_impl(ctx, cgraph->grads[isrc], tensor, cgraph->grad_accs[isrc]);
    } else {
        cgraph->grads[isrc] = ggml_neg(ctx, tensor);
5233
    }
5234
5235
    ggml_format_name(cgraph->grads[isrc], "grad for %s", src->name);
    ggml_build_forward_expand(cgraph, cgraph->grads[isrc]);
5236
5237
}

5238
5239
5240
5241
static void ggml_compute_backward(
        struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i, bool * grads_needed) {
    struct ggml_tensor * tensor = cgraph->nodes[i];
    struct ggml_tensor * grad   = ggml_graph_get_grad(cgraph, tensor);
5242

5243
5244
    if (!grad) {
        return;
5245
5246
    }

5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
    struct ggml_tensor * src0 = tensor->src[0];
    struct ggml_tensor * src1 = tensor->src[1];
    struct ggml_tensor * src2 = tensor->src[2];
    struct ggml_hash_set * hash_set = &cgraph->visited_hash_set;
    const size_t isrc0 = src0 ? ggml_hash_find(hash_set, src0) : (size_t) -1;
    const size_t isrc1 = src1 ? ggml_hash_find(hash_set, src1) : (size_t) -1;
    const size_t isrc2 = src2 ? ggml_hash_find(hash_set, src2) : (size_t) -1;
    const bool src0_needs_grads = src0 && isrc0 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc0) && grads_needed[isrc0];
    const bool src1_needs_grads = src1 && isrc1 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc1) && grads_needed[isrc1];
    const bool src2_needs_grads = src2 && isrc2 != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, isrc2) && grads_needed[isrc2];
5257

5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
    switch (tensor->op) {
        case GGML_OP_DUP: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, grad);
            }
        } break;
        case GGML_OP_ADD: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, grad);
            }
            if (src1_needs_grads) {
                struct ggml_tensor * tmp = grad;
                if (!ggml_are_same_shape(src0, src1)) {
                    tmp = ggml_repeat_back(ctx, tmp, src1);
                }
                ggml_add_or_set(ctx, cgraph, isrc1, tmp);
            }
        } break;
        case GGML_OP_ADD1: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, grad);
            }
            if (src1_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc1, ggml_mean(ctx, grad)); // TODO: should probably be sum instead of mean
            }
        } break;
        case GGML_OP_ACC: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, grad);
            }
            if (src1_needs_grads) {
                const size_t nb1    = ((int32_t *) tensor->op_params)[0];
                const size_t nb2    = ((int32_t *) tensor->op_params)[1];
                const size_t nb3    = ((int32_t *) tensor->op_params)[2];
                const size_t offset = ((int32_t *) tensor->op_params)[3];

                struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
                    grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
                    nb1, nb2, nb3, offset);

                ggml_add_or_set(ctx, cgraph, isrc1, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1));
            }
        } break;
        case GGML_OP_SUB: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, grad);
            }
            if (src1_needs_grads) {
                ggml_sub_or_set(ctx, cgraph, isrc1, grad);
            }
        } break;
        case GGML_OP_MUL: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, src1, grad));
            }
            if (src1_needs_grads) {
                struct ggml_tensor * tmp = ggml_mul(ctx, src0, grad);
                if (!ggml_are_same_shape(src0, src1)) {
                    tmp = ggml_repeat_back(ctx, tmp, src1);
                }
                ggml_add_or_set(ctx, cgraph, isrc1, tmp);
            }
        } break;
        case GGML_OP_DIV: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_div(ctx, grad, src1));
            }
            if (src1_needs_grads) {
                ggml_sub_or_set(ctx, cgraph, isrc1, ggml_mul(ctx, grad, ggml_div(ctx, tensor, src1)));
            }
        } break;
        case GGML_OP_SQR: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale(ctx, ggml_mul(ctx, src0, grad), 2.0f));
            }
        } break;
        case GGML_OP_SQRT: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale(ctx, ggml_div(ctx, grad, tensor), 0.5f));
            }
        } break;
        case GGML_OP_LOG: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_div(ctx, grad, src0));
            }
        } break;
        case GGML_OP_SIN: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, ggml_cos(ctx, src0)));
            }
        } break;
        case GGML_OP_COS: {
            if (src0_needs_grads) {
                ggml_sub_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, grad, ggml_sin(ctx, src0)));
            }
        } break;
        case GGML_OP_SUM: {
            if (src0_needs_grads) {
                ggml_add1_or_set(ctx, cgraph, isrc0, grad);
            }
        } break;
        case GGML_OP_SUM_ROWS: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat(ctx, grad, src0));
            }
        } break;
        case GGML_OP_MEAN: {
            if (src0_needs_grads) {
                ggml_add1_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, 1.0f/src0->ne[0], false));
            }
        } break;
        case GGML_OP_REPEAT: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat_back(ctx, grad, src0));
            }
        } break;
        case GGML_OP_REPEAT_BACK: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_repeat(ctx, grad, src0));
            }
        } break;
        case GGML_OP_RMS_NORM: {
            if (src0_needs_grads) {
                float eps;
                memcpy(&eps, tensor->op_params, sizeof(float));
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_rms_norm_back(ctx, src0, grad, eps));
            }
        } break;
        case GGML_OP_MUL_MAT: {
            // https://cs231n.github.io/optimization-2/#staged
            // # forward pass
            // s0 = np.random.randn(5, 10)
            // s1 = np.random.randn(10, 3)
            // t = s0.dot(s1)

            // # now suppose we had the gradient on t from above in the circuit
            // dt = np.random.randn(*t.shape) # same shape as t
            // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
            // ds1 = t.T.dot(dt)

            // tensor.shape [m,p,qq,rr]
            // src0.shape   [n,m,q1,r1]
            // src1.shape   [n,p,qq,rr]

            if (src0_needs_grads) {
                struct ggml_tensor * s1_tg =
                    ggml_out_prod(ctx, // [n,m,qq,rr]
                        src1,          // [n,p,qq,rr]
                        grad);         // [m,p,qq,rr]
                const int64_t qq = s1_tg->ne[2];
                const int64_t rr = s1_tg->ne[3];
                const int64_t q1 = src0->ne[2];
                const int64_t r1 = src0->ne[3];
                const bool ne2_broadcasted = qq > q1;
                const bool ne3_broadcasted = rr > r1;
                if (ne2_broadcasted || ne3_broadcasted) {
                    // sum broadcast repetitions of s1_tg into shape of src0
                    s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
                }
                ggml_add_or_set(ctx, cgraph, isrc0, s1_tg /*= [n,m,q1,r1]*/);
            }
            if (src1_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc1,
                        // ggml_mul_mat(ctx,                   // [n,p,qq,rr]
                        //     ggml_cont(ctx,                  // [m,n,q1,r1]
                        //         ggml_transpose(ctx, src0)), // [m,n,q1,r1]
                        //     grad),                          // [m,p,qq,rr]

                        // when src0 is bigger than tensor->grad (this is mostly the case in llama),
                        // avoid transpose of src0, rather transpose smaller tensor->grad
                        // and then use ggml_out_prod
                        ggml_out_prod(ctx,      // [n,p,qq,rr]
                            src0,               // [n,m,q1,r1]
                            ggml_transpose(ctx, // [p,m,qq,rr]
                                grad)));        // [m,p,qq,rr]
            }
        } break;
        case GGML_OP_SCALE: {
            if (src0_needs_grads) {
                float s;
                memcpy(&s, tensor->op_params, sizeof(float));
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_scale_impl(ctx, grad, s, false));
            }
        } break;
        case GGML_OP_SET: {
            const size_t nb1    = ((const int32_t *) tensor->op_params)[0];
            const size_t nb2    = ((const int32_t *) tensor->op_params)[1];
            const size_t nb3    = ((const int32_t *) tensor->op_params)[2];
            const size_t offset = ((const int32_t *) tensor->op_params)[3];

            struct ggml_tensor * tensor_grad_view = NULL;

            if (src0_needs_grads || src1_needs_grads) {
                GGML_ASSERT(src0->type == tensor->type);
                GGML_ASSERT(!cgraph->grads[isrc0] ||                      cgraph->grads[isrc0]->type == grad->type);
                GGML_ASSERT(!cgraph->grads[isrc1] || !src1_needs_grads || cgraph->grads[isrc1]->type == grad->type);

                tensor_grad_view = ggml_view_4d(ctx,
                    grad, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
                    nb1, nb2, nb3, offset);
            }

            if (src0_needs_grads) {
                struct ggml_tensor * tmp = ggml_neg(ctx, tensor_grad_view);
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_acc_impl(ctx, grad, tmp, nb1, nb2, nb3, offset, false));
            }

            if (src1_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc1, ggml_reshape(ctx, ggml_cont(ctx, tensor_grad_view), src1));
            }
        } break;
        case GGML_OP_CPY: {
            // cpy overwrites value of src1 by src0 and returns view(src1)
            // the overwriting is mathematically equivalent to:
            // tensor = src0 * 1 + src1 * 0
            if (src0_needs_grads) {
                // dsrc0 = dtensor * 1
                ggml_add_or_set(ctx, cgraph, isrc0, grad);
            }
            if (src1_needs_grads) {
                // dsrc1 = dtensor * 0 -> noop
            }
        } break;
        case GGML_OP_CONT: {
            // same as cpy
            if (src0_needs_grads) {
                GGML_ASSERT(!cgraph->grads[isrc0] || ggml_is_contiguous(cgraph->grads[isrc0]));
                GGML_ASSERT(ggml_is_contiguous(grad));
                ggml_add_or_set(ctx, cgraph, isrc0, grad);
            }
        } break;
        case GGML_OP_RESHAPE: {
            if (src0_needs_grads) {
                struct ggml_tensor * grad_cont = ggml_is_contiguous(grad) ? grad : ggml_cont(ctx, grad);
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_reshape(ctx, grad_cont, src0));
            }
        } break;
        case GGML_OP_VIEW: {
            if (src0_needs_grads) {
                size_t offset;

                memcpy(&offset, tensor->op_params, sizeof(offset));

                size_t nb1 = tensor->nb[1];
                size_t nb2 = tensor->nb[2];
                size_t nb3 = tensor->nb[3];

                if (cgraph->grads[isrc0] && src0->type != cgraph->grads[isrc0]->type) {
                    // gradient is typically F32, but src0 could be other type
                    size_t ng = ggml_element_size(cgraph->grads[isrc0]);
                    size_t n0 = ggml_element_size(src0);
                    GGML_ASSERT(offset % n0 == 0);
                    GGML_ASSERT(nb1 % n0 == 0);
                    GGML_ASSERT(nb2 % n0 == 0);
                    GGML_ASSERT(nb3 % n0 == 0);
                    offset = (offset / n0) * ng;
                    nb1 = (nb1 / n0) * ng;
                    nb2 = (nb2 / n0) * ng;
                    nb3 = (nb3 / n0) * ng;
                }

                ggml_acc_or_set(ctx, cgraph, isrc0, grad, nb1, nb2, nb3, offset);
            }
        } break;
        case GGML_OP_PERMUTE: {
            if (src0_needs_grads) {
                const int32_t * axes = (const int32_t *) tensor->op_params;
                const int axis0 = axes[0] & 0x3;
                const int axis1 = axes[1] & 0x3;
                const int axis2 = axes[2] & 0x3;
                const int axis3 = axes[3] & 0x3;
                int axb[4] = {0,0,0,0}; // axes backward
                axb[axis0] = 0;
                axb[axis1] = 1;
                axb[axis2] = 2;
                axb[axis3] = 3;
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_permute(ctx, grad, axb[0], axb[1], axb[2], axb[3]));
            }
        } break;
        case GGML_OP_TRANSPOSE: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_transpose(ctx, grad));
            }
        } break;
        case GGML_OP_GET_ROWS: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_get_rows_back(ctx, grad, src1, src0));
            }
            if (src1_needs_grads) {
                // noop
            }
        } break;
        case GGML_OP_DIAG_MASK_INF: {
            if (src0_needs_grads) {
                /* ggml_diag_mask_inf_impl() shouldn't be here */
                /* ref:  https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
                const int n_past = ((const int32_t *) tensor->op_params)[0];
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_diag_mask_zero_impl(ctx, grad, n_past, false));
            }
        } break;
        case GGML_OP_DIAG_MASK_ZERO: {
            if (src0_needs_grads) {
                const int n_past = ((const int32_t *) tensor->op_params)[0];
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_diag_mask_zero_impl(ctx, grad, n_past, false));
            }
        } break;
        case GGML_OP_SOFT_MAX: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_soft_max_back(ctx, grad, tensor));
            }
            GGML_ASSERT((!src1 || !src1_needs_grads) && "backward pass for softmax mask not implemented");
        } break;
        case GGML_OP_ROPE: {
            if (src0_needs_grads) {
                //const int n_past = ((int32_t *) tensor->op_params)[0];
                const int n_dims     = ((const int32_t *) tensor->op_params)[1];
                const int mode       = ((const int32_t *) tensor->op_params)[2];
                //const int n_ctx      = ((int32_t *) tensor->op_params)[3];
                const int n_ctx_orig = ((const int32_t *) tensor->op_params)[4];
                float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;

                memcpy(&freq_base,   (const float *) tensor->op_params +  5, sizeof(float));
                memcpy(&freq_scale,  (const float *) tensor->op_params +  6, sizeof(float));
                memcpy(&ext_factor,  (const float *) tensor->op_params +  7, sizeof(float));
                memcpy(&attn_factor, (const float *) tensor->op_params +  8, sizeof(float));
                memcpy(&beta_fast,   (const float *) tensor->op_params +  9, sizeof(float));
                memcpy(&beta_slow,   (const float *) tensor->op_params + 10, sizeof(float));

                ggml_add_or_set(ctx, cgraph, isrc0,
                    ggml_rope_back(ctx, grad, src1, src2, n_dims, mode, n_ctx_orig, freq_base,
                        freq_scale, ext_factor, attn_factor, beta_fast, beta_slow));
            }
            GGML_ASSERT((!src2 || !src2_needs_grads) && "gradients for freq factors not implemented");
        } break;
        case GGML_OP_IM2COL: {
            if (src1_needs_grads) {
                const int32_t s0    = ggml_get_op_params_i32(tensor, 0);
                const int32_t s1    = ggml_get_op_params_i32(tensor, 1);
                const int32_t p0    = ggml_get_op_params_i32(tensor, 2);
                const int32_t p1    = ggml_get_op_params_i32(tensor, 3);
                const int32_t d0    = ggml_get_op_params_i32(tensor, 4);
                const int32_t d1    = ggml_get_op_params_i32(tensor, 5);
                const bool    is_2D = ggml_get_op_params_i32(tensor, 6) == 1;

                ggml_add_or_set(ctx, cgraph, isrc1, ggml_im2col_back(ctx, src0, grad, src1->ne, s0, s1, p0, p1, d0, d1, is_2D));
            }
        } break;
        case GGML_OP_POOL_2D: {
            if (src0_needs_grads) {
                const enum ggml_op_pool op = ggml_get_op_params_i32(tensor, 0);
                const      int32_t      k0 = ggml_get_op_params_i32(tensor, 1);
                const      int32_t      k1 = ggml_get_op_params_i32(tensor, 2);
                const      int32_t      s0 = ggml_get_op_params_i32(tensor, 3);
                const      int32_t      s1 = ggml_get_op_params_i32(tensor, 4);
                const      int32_t      p0 = ggml_get_op_params_i32(tensor, 5);
                const      int32_t      p1 = ggml_get_op_params_i32(tensor, 6);

                ggml_add_or_set(ctx, cgraph, isrc0, ggml_pool_2d_back(ctx, grad, src0, op, k0, k1, s0, s1, p0, p1));
            }
        } break;
        case GGML_OP_WIN_PART:
        case GGML_OP_WIN_UNPART:
        case GGML_OP_UNARY: {
            switch (ggml_get_unary_op(tensor)) {
                case GGML_UNARY_OP_ABS: {
                    if (src0_needs_grads) {
                        ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, ggml_sgn(ctx, src0), grad));
                    }
                } break;
                case GGML_UNARY_OP_SGN: {
                    // noop
                } break;
                case GGML_UNARY_OP_NEG: {
                    if (src0_needs_grads) {
                        ggml_sub_or_set(ctx, cgraph, isrc0, grad);
                    }
                } break;
                case GGML_UNARY_OP_STEP: {
                    // noop
                } break;
                case GGML_UNARY_OP_RELU: {
                    if (src0_needs_grads) {
                        ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, ggml_step(ctx, src0), grad));
                    }
                } break;
                case GGML_UNARY_OP_SILU: {
                    if (src0_needs_grads) {
                        ggml_add_or_set(ctx, cgraph, isrc0, ggml_silu_back(ctx, src0, grad));
                    }
                } break;
                case GGML_UNARY_OP_EXP: {
                    if (src0_needs_grads) {
                        ggml_add_or_set(ctx, cgraph, isrc0, ggml_mul(ctx, tensor, grad));
                    }
                } break;
                default: {
                    fprintf(stderr, "%s: unsupported unary op for backward pass: %s\n",
                        __func__, ggml_unary_op_name(ggml_get_unary_op(tensor)));
                    GGML_ABORT("fatal error");
                } //break;
            }
        } break;
        case GGML_OP_CROSS_ENTROPY_LOSS: {
            if (src0_needs_grads) {
                ggml_add_or_set(ctx, cgraph, isrc0, ggml_cross_entropy_loss_back(ctx, src0, src1, grad));
            }
            GGML_ASSERT(!src1_needs_grads && "backward pass for labels not implemented");
        } break;
        case GGML_OP_NONE: {
            // noop
        } break;
        case GGML_OP_COUNT:
        default: {
            fprintf(stderr, "%s: unsupported ggml op for backward pass: %s\n", __func__, ggml_op_name(tensor->op));
            GGML_ABORT("fatal error");
        } //break;
    }
5675

5676
5677
5678
    GGML_ASSERT(!src0_needs_grads || ggml_are_same_shape(src0, cgraph->grads[isrc0]));
    GGML_ASSERT(!src1_needs_grads || ggml_are_same_shape(src1, cgraph->grads[isrc1]));
    GGML_ASSERT(!src2_needs_grads || ggml_are_same_shape(src2, cgraph->grads[isrc2]));
5679
5680
}

5681
5682
5683
5684
5685
static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
    // check if already visited
    if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) {
        return;
    }
5686

5687
5688
5689
5690
5691
5692
5693
    for (int i = 0; i < GGML_MAX_SRC; ++i) {
        const int k =
            (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
            (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
            /* unknown order, just fall back to using i*/ i;
        if (node->src[k]) {
            ggml_visit_parents(cgraph, node->src[k]);
5694
        }
5695
    }
5696

5697
5698
5699
    if (node->op == GGML_OP_NONE && !(node->flags & GGML_TENSOR_FLAG_PARAM)) {
        // reached a leaf node, not part of the gradient graph (e.g. a constant)
        GGML_ASSERT(cgraph->n_leafs < cgraph->size);
5700

5701
5702
        if (strlen(node->name) == 0) {
            ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
5703
5704
        }

5705
5706
5707
5708
        cgraph->leafs[cgraph->n_leafs] = node;
        cgraph->n_leafs++;
    } else {
        GGML_ASSERT(cgraph->n_nodes < cgraph->size);
5709

5710
5711
        if (strlen(node->name) == 0) {
            ggml_format_name(node, "node_%d", cgraph->n_nodes);
5712
        }
5713
5714
5715

        cgraph->nodes[cgraph->n_nodes] = node;
        cgraph->n_nodes++;
5716
    }
5717
}
5718

5719
5720
5721
5722
5723
static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
    if (!expand) {
        // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
        ggml_graph_clear(cgraph);
    }
5724

5725
    const int n0 = cgraph->n_nodes;
5726

5727
    ggml_visit_parents(cgraph, tensor);
5728

5729
5730
    const int n_new = cgraph->n_nodes - n0;
    GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
5731

5732
5733
5734
    if (n_new > 0) {
        // the last added node should always be starting point
        GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
5735
    }
5736
}
5737

5738
5739
5740
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
    ggml_build_forward_impl(cgraph, tensor, true);
}
5741

5742
5743
5744
5745
5746
5747
5748
5749
void ggml_build_backward_expand(
        struct ggml_context * ctx_static,
        struct ggml_context * ctx_compute,
        struct ggml_cgraph  * cgraph,
        bool                  accumulate) {
    GGML_ASSERT(cgraph->n_nodes > 0);
    GGML_ASSERT(cgraph->grads);
    GGML_ASSERT(cgraph->grad_accs);
5750

5751
    const int n_nodes_f = cgraph->n_nodes;
5752

5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
    memset(cgraph->grads,     0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *));
    memset(cgraph->grad_accs, 0, cgraph->visited_hash_set.size*sizeof(struct ggml_tensor *));
    bool * grads_needed = calloc(cgraph->visited_hash_set.size, sizeof(bool));

    {
        bool any_params = false;
        bool any_loss   = false;
        for (int i = 0; i < n_nodes_f; ++i) {
            struct ggml_tensor * node = cgraph->nodes[i];
            any_params = any_params || (node->flags & GGML_TENSOR_FLAG_PARAM);
            any_loss   = any_loss   || (node->flags & GGML_TENSOR_FLAG_LOSS);
5764
        }
5765
5766
        GGML_ASSERT(any_params && "no trainable parameters found, did you forget to call ggml_set_param?");
        GGML_ASSERT(any_loss && "no training loss found, did you forget to call ggml_set_loss?");
5767
5768
    }

5769
5770
    for (int i = 0; i < n_nodes_f; ++i) {
        struct ggml_tensor * node = cgraph->nodes[i];
5771

5772
5773
5774
        if (node->type == GGML_TYPE_I32) {
            continue;
        }
5775

5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
        bool node_needs_grad = (node->flags & GGML_TENSOR_FLAG_PARAM) || (node->flags & GGML_TENSOR_FLAG_LOSS);
        bool ignore_src[GGML_MAX_SRC] = {false};
        switch (node->op) {
            // gradients in node->src[0] for one reason or another have no effect on output gradients
            case GGML_OP_IM2COL:      // only used for its shape
            case GGML_OP_IM2COL_BACK: // same as IM2COL
                ignore_src[0] = true;
                break;
            case GGML_OP_UNARY: {
                const enum ggml_unary_op uop = ggml_get_unary_op(node);
                // SGN and STEP unary ops are piecewise constant
                if (uop == GGML_UNARY_OP_SGN || uop == GGML_UNARY_OP_STEP) {
                    ignore_src[0] = true;
                }
            } break;
5791

5792
5793
5794
5795
5796
5797
5798
            // gradients in node->src[1] for one reason or another have no effect on output gradients
            case GGML_OP_CPY:           // gradients in CPY target are irrelevant
            case GGML_OP_GET_ROWS:      // row indices not differentiable
            case GGML_OP_GET_ROWS_BACK: // same as for GET_ROWS
            case GGML_OP_ROPE:          // positions not differentiable
                ignore_src[1] = true;
                break;
5799

5800
5801
            default:
                break;
5802
        }
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
        for (int j = 0; j < GGML_MAX_SRC; ++j) {
            if (!node->src[j] || ignore_src[j] || !grads_needed[ggml_hash_find(&cgraph->visited_hash_set, node->src[j])]) {
                continue;
            }
            GGML_ASSERT(node->src[j]->type == GGML_TYPE_F32 || node->src[j]->type == GGML_TYPE_F16);
            node_needs_grad = true;
            break;
        }
        if (!node_needs_grad) {
            continue;
5813
5814
        }

5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
        // inplace operations are currently not supported
        GGML_ASSERT(!node->view_src || node->op == GGML_OP_CPY || node->op == GGML_OP_VIEW ||
            node->op == GGML_OP_RESHAPE || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_TRANSPOSE);

        const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node);
        GGML_ASSERT(igrad != GGML_HASHSET_FULL);
        GGML_ASSERT(ggml_bitset_get(cgraph->visited_hash_set.used, igrad));
        if ((accumulate && (node->flags & GGML_TENSOR_FLAG_PARAM)) || (node->flags & GGML_TENSOR_FLAG_LOSS)) {
            cgraph->grad_accs[igrad] = ggml_dup_tensor(ctx_static, node);
            cgraph->grads[igrad]     = cgraph->grad_accs[igrad];
            ggml_format_name(cgraph->grad_accs[igrad], "grad acc for %s", node->name);
5826
        }
5827
        grads_needed[igrad] = true;
5828
5829
    }

5830
5831
5832
5833
    for (int i = n_nodes_f - 1; i >= 0; --i) {
        // inplace operations to add gradients are not created by ggml_compute_backward except for gradient accumulation
        // use allocator to automatically make inplace operations
        ggml_compute_backward(ctx_compute, cgraph, i, grads_needed);
5834
    }
5835
5836

    free(grads_needed);
5837
5838
}

5839
5840
5841
5842
5843
5844
static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
    void * ptr = *p;
    ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
    *p = (void *) ((char *) ptr + size);
    return ptr;
}
5845

5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
static size_t ggml_graph_nbytes(size_t size, bool grads) {
    size_t hash_size = ggml_hash_size(size * 2);
    void * p = 0;
    incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
    incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
    incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
    incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
    if (grads) {
        incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
        incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grad_accs
5856
    }
5857
    incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
5858

5859
5860
5861
    size_t nbytes = (size_t) p;
    return nbytes;
}
5862

5863
5864
5865
size_t ggml_graph_overhead_custom(size_t size, bool grads) {
    return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
}
5866

5867
5868
5869
size_t ggml_graph_overhead(void) {
    return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
}
5870

5871
5872
5873
5874
struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
    const size_t obj_size = ggml_graph_nbytes(size, grads);
    struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
    struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
5875

5876
5877
    // the size of the hash table is doubled since it needs to hold both nodes and leafs
    size_t hash_size = ggml_hash_size(size * 2);
5878

5879
    void * p = cgraph + 1;
5880

5881
5882
5883
5884
5885
    struct ggml_tensor ** nodes_ptr     =         incr_ptr_aligned(&p, size      * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
    struct ggml_tensor ** leafs_ptr     =         incr_ptr_aligned(&p, size      * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
    struct ggml_tensor ** hash_keys_ptr =         incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
    struct ggml_tensor ** grads_ptr     = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
    struct ggml_tensor ** grad_accs_ptr = grads ? incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
5886

5887
    ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
5888

5889
5890
    // check that we allocated the correct amount of memory
    assert(obj_size == (size_t)((char *)p - (char *)cgraph));
5891

5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
    *cgraph = (struct ggml_cgraph) {
        /*.size         =*/ size,
        /*.n_nodes      =*/ 0,
        /*.n_leafs      =*/ 0,
        /*.nodes        =*/ nodes_ptr,
        /*.grads        =*/ grads_ptr,
        /*.grad_accs    =*/ grad_accs_ptr,
        /*.leafs        =*/ leafs_ptr,
        /*.hash_table   =*/ { hash_size, hash_used, hash_keys_ptr },
        /*.order        =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
    };
5903

5904
5905
5906
5907
5908
    ggml_hash_set_reset(&cgraph->visited_hash_set);
    if (grads) {
        memset(cgraph->grads,     0, hash_size*sizeof(struct ggml_tensor *));
        memset(cgraph->grad_accs, 0, hash_size*sizeof(struct ggml_tensor *));
    }
5909

5910
5911
    return cgraph;
}
5912

5913
5914
5915
struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
    return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
}
5916

5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
    struct ggml_cgraph cgraph = {
        /*.size             =*/ 0,
        /*.n_nodes          =*/ i1 - i0,
        /*.n_leafs          =*/ 0,
        /*.nodes            =*/ cgraph0->nodes + i0,
        /*.grads            =*/ NULL, // gradients would need visited_hash_set
        /*.grad_accs        =*/ NULL,
        /*.leafs            =*/ NULL,
        /*.visited_hash_set =*/ { 0, NULL, NULL },
        /*.order            =*/ cgraph0->order,
    };
5929

5930
5931
    return cgraph;
}
5932

5933
5934
5935
5936
void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
    GGML_ASSERT(dst->size >= src->n_leafs);
    GGML_ASSERT(dst->size >= src->n_nodes);
    GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size);
5937

5938
5939
5940
    dst->n_leafs = src->n_leafs;
    dst->n_nodes = src->n_nodes;
    dst->order   = src->order;
5941

5942
5943
5944
    for (int i = 0; i < src->n_leafs; ++i) {
        dst->leafs[i] = src->leafs[i];
    }
5945

5946
5947
5948
    for (int i = 0; i < src->n_nodes; ++i) {
        dst->nodes[i] = src->nodes[i];
    }
5949

5950
5951
5952
5953
    for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
        // copy all hashset keys (tensors) that are in use
        if (ggml_bitset_get(src->visited_hash_set.used, i)) {
            ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
5954
        }
5955
    }
5956

5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
    if (dst->grads) {
        memset(dst->grads,     0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *));
        memset(dst->grad_accs, 0, dst->visited_hash_set.size*sizeof(struct ggml_tensor *));
    }
    if (src->grads) {
        GGML_ASSERT(dst->grads     != NULL);
        GGML_ASSERT(dst->grad_accs != NULL);
        for (int i = 0; i < src->n_nodes; ++i) {
            const size_t igrad_src = ggml_hash_find(&src->visited_hash_set, src->nodes[i]);
            const size_t igrad_dst = ggml_hash_find(&dst->visited_hash_set, dst->nodes[i]);
5967

5968
5969
5970
5971
            GGML_ASSERT(igrad_src != GGML_HASHSET_FULL);
            GGML_ASSERT(ggml_bitset_get(src->visited_hash_set.used, igrad_src));
            GGML_ASSERT(igrad_dst != GGML_HASHSET_FULL);
            GGML_ASSERT(ggml_bitset_get(dst->visited_hash_set.used, igrad_dst));
5972

5973
5974
            dst->grads[igrad_dst]     = src->grads[igrad_src];
            dst->grad_accs[igrad_dst] = src->grad_accs[igrad_src];
5975
5976
5977
5978
        }
    }
}

5979
5980
5981
5982
5983
struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
    struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
    ggml_graph_cpy(cgraph, result);
    return result;
}
5984

5985
5986
5987
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
    if (ggml_is_empty(tensor)) {
        return tensor;
5988
    }
5989
5990
5991
5992
5993
    if (tensor->buffer) {
        ggml_backend_tensor_memset(tensor, 0, 0, ggml_nbytes(tensor));
    } else {
        GGML_ASSERT(tensor->data);
        memset(tensor->data, 0, ggml_nbytes(tensor));
5994
    }
5995
5996
    return tensor;
}
5997

5998
5999
void ggml_graph_reset(struct ggml_cgraph * cgraph) {
    GGML_ASSERT(cgraph->grads != NULL);
6000

6001
6002
6003
    for (int i = 0; i < cgraph->n_nodes; i++) {
        struct ggml_tensor * node     = cgraph->nodes[i];
        struct ggml_tensor * grad_acc = ggml_graph_get_grad_acc(cgraph, node);
6004

6005
6006
6007
6008
6009
        if (node->op == GGML_OP_OPT_STEP_ADAMW) {
            // clear momenta
            ggml_set_zero(node->src[2]);
            ggml_set_zero(node->src[3]);
        }
6010

6011
6012
6013
6014
6015
        // initial gradients of loss should be 1, 0 otherwise
        if (grad_acc) {
            if (node->flags & GGML_TENSOR_FLAG_LOSS) {
                GGML_ASSERT(grad_acc->type == GGML_TYPE_F32);
                GGML_ASSERT(ggml_is_scalar(grad_acc));
6016

6017
6018
6019
                const float onef = 1.0f;
                if (grad_acc->buffer) {
                    ggml_backend_tensor_set(grad_acc, &onef, 0, sizeof(float));
6020
                } else {
6021
6022
                    GGML_ASSERT(grad_acc->data);
                    *((float *) grad_acc->data) = onef;
6023
                }
6024
6025
            } else {
                ggml_set_zero(grad_acc);
6026
6027
6028
            }
        }
    }
6029
}
6030

6031
6032
6033
6034
6035
void ggml_graph_clear(struct ggml_cgraph * cgraph) {
    cgraph->n_leafs = 0;
    cgraph->n_nodes = 0;
    ggml_hash_set_reset(&cgraph->visited_hash_set);
}
6036

6037
6038
int ggml_graph_size(struct ggml_cgraph * cgraph) {
    return cgraph->size;
6039
6040
}

6041
6042
6043
6044
struct ggml_tensor * ggml_graph_node(struct ggml_cgraph * cgraph, int i) {
    if (i < 0) {
        GGML_ASSERT(cgraph->n_nodes + i >= 0);
        return cgraph->nodes[cgraph->n_nodes + i];
6045
6046
    }

6047
6048
6049
    GGML_ASSERT(i < cgraph->n_nodes);
    return cgraph->nodes[i];
}
6050

6051
6052
6053
struct ggml_tensor ** ggml_graph_nodes(struct ggml_cgraph * cgraph) {
    return cgraph->nodes;
}
6054

6055
6056
6057
int ggml_graph_n_nodes(struct ggml_cgraph * cgraph) {
    return cgraph->n_nodes;
}
6058

6059
6060
6061
6062
6063
void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
    GGML_ASSERT(cgraph->size > cgraph->n_nodes);
    cgraph->nodes[cgraph->n_nodes] = tensor;
    cgraph->n_nodes++;
}
6064

6065
6066
6067
struct ggml_tensor * ggml_graph_get_tensor(const struct ggml_cgraph * cgraph, const char * name) {
    for (int i = 0; i < cgraph->n_leafs; i++) {
        struct ggml_tensor * leaf = cgraph->leafs[i];
6068

6069
6070
6071
        if (strcmp(leaf->name, name) == 0) {
            return leaf;
        }
6072
6073
    }

6074
6075
    for (int i = 0; i < cgraph->n_nodes; i++) {
        struct ggml_tensor * node = cgraph->nodes[i];
6076

6077
6078
6079
6080
        if (strcmp(node->name, name) == 0) {
            return node;
        }
    }
6081

6082
6083
    return NULL;
}
6084

6085
6086
6087
6088
struct ggml_tensor * ggml_graph_get_grad(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
    const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node);
    return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) ? cgraph->grads[igrad] : NULL;
}
6089

6090
6091
6092
6093
struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
    const size_t igrad = ggml_hash_find(&cgraph->visited_hash_set, node);
    return igrad != GGML_HASHSET_FULL && ggml_bitset_get(cgraph->visited_hash_set.used, igrad) ? cgraph->grad_accs[igrad] : NULL;
}
6094

6095
6096
void ggml_graph_print(const struct ggml_cgraph * cgraph) {
    GGML_LOG_INFO("=== GRAPH ===\n");
6097

6098
6099
6100
    GGML_LOG_INFO("n_nodes = %d\n", cgraph->n_nodes);
    for (int i = 0; i < cgraph->n_nodes; i++) {
        struct ggml_tensor * node = cgraph->nodes[i];
6101

6102
6103
6104
6105
6106
        GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
                i,
                node->ne[0], node->ne[1], node->ne[2],
                ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" :
                      ggml_graph_get_grad(cgraph, node) ? "g" : " ");
6107
6108
    }

6109
6110
6111
    GGML_LOG_INFO("n_leafs = %d\n", cgraph->n_leafs);
    for (int i = 0; i < cgraph->n_leafs; i++) {
        struct ggml_tensor * node = cgraph->leafs[i];
6112

6113
6114
6115
6116
6117
        GGML_LOG_INFO(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
                i,
                node->ne[0], node->ne[1],
                ggml_op_name(node->op),
                ggml_get_name(node));
6118
6119
    }

6120
6121
6122
6123
6124
6125
6126
    GGML_LOG_INFO("========================================\n");
}

// check if node is part of the graph
static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
    if (cgraph == NULL) {
        return true;
6127
6128
    }

6129
6130
6131
    for (int i = 0; i < cgraph->n_nodes; i++) {
        if (cgraph->nodes[i] == node) {
            return true;
6132
6133
6134
        }
    }

6135
6136
    return false;
}
6137

6138
6139
6140
6141
static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
    for (int i = 0; i < cgraph->n_nodes; i++) {
        struct ggml_tensor * parent = cgraph->nodes[i];
        struct ggml_tensor * grad = ggml_graph_get_grad(cgraph, parent);
6142

6143
6144
        if (grad == node) {
            return parent;
6145
        }
6146
6147
6148
6149
    }

    return NULL;
}
6150

6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label)  {
    struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
    struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
    fprintf(fp, "  \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
            gparent0 ? (void *) gparent0 : (void *) parent,
            gparent0 ? "g" : "x",
            gparent ? (void *) gparent : (void *) node,
            gparent ? "g" : "x",
            gparent ? "empty" : "vee",
            gparent ? "dashed" : "solid",
            label);
}
6163

6164
6165
6166
6167
6168
6169
static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label)  {
    fprintf(fp, "  \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
            (void *) parent, "x",
            (void *) node, "x",
            label);
}
6170

6171
6172
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
    char color[16];
6173

6174
6175
    FILE * fp = ggml_fopen(filename, "w");
    GGML_ASSERT(fp);
6176

6177
6178
6179
    fprintf(fp, "digraph G {\n");
    fprintf(fp, "  newrank = true;\n");
    fprintf(fp, "  rankdir = TB;\n");
6180

6181
6182
6183
    for (int i = 0; i < gb->n_nodes; i++) {
        struct ggml_tensor * node = gb->nodes[i];
        struct ggml_tensor * grad = ggml_graph_get_grad(gb, node);
6184

6185
6186
        if (ggml_graph_get_parent(gb, node) != NULL) {
            continue;
6187
6188
        }

6189
6190
6191
6192
6193
        if (node->flags & GGML_TENSOR_FLAG_PARAM) {
            snprintf(color, sizeof(color), "yellow");
        } else if (grad) {
            if (ggml_graph_find(gf, node)) {
                snprintf(color, sizeof(color), "green");
6194
            } else {
6195
                snprintf(color, sizeof(color), "lightblue");
6196
            }
6197
6198
        } else {
            snprintf(color, sizeof(color), "white");
6199
6200
        }

6201
6202
6203
6204
        fprintf(fp, "  \"%p\" [ "
                    "style = filled; fillcolor = %s; shape = record; "
                    "label=\"",
                (void *) node, color);
6205

6206
6207
6208
6209
        if (strlen(node->name) > 0) {
            fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
        } else {
            fprintf(fp, "(%s)|", ggml_type_name(node->type));
6210
6211
        }

6212
6213
6214
6215
        if (ggml_is_matrix(node)) {
            fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
        } else {
            fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
6216
6217
        }

6218
6219
6220
6221
6222
        if (grad) {
            fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(grad->op));
        } else {
            fprintf(fp, "\"; ]\n");
        }
6223
6224
    }

6225
6226
    for (int i = 0; i < gb->n_leafs; i++) {
        struct ggml_tensor * node = gb->leafs[i];
6227

6228
        snprintf(color, sizeof(color), "pink");
6229

6230
6231
6232
6233
        fprintf(fp, "  \"%p\" [ "
                    "style = filled; fillcolor = %s; shape = record; "
                    "label=\"<x>",
                (void *) node, color);
6234

6235
6236
6237
6238
        if (strlen(node->name) > 0) {
            fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
        } else {
            fprintf(fp, "(%s)|", ggml_type_name(node->type));
6239
6240
        }

6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
        fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
        if (ggml_nelements(node) < 5 && node->data != NULL) {
            fprintf(fp, " | (");
            for (int j = 0; j < ggml_nelements(node); j++) {
                // FIXME: use ggml-backend to obtain the tensor data
                //if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
                //    fprintf(fp, "%d", ggml_get_i32_1d(node, j));
                //}
                //else if (node->type == GGML_TYPE_F32 ||
                //         node->type == GGML_TYPE_F16 ||
                //         node->type == GGML_TYPE_BF16) {
                //    fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
                //}
                //else
                {
                    fprintf(fp, "#");
                }
                if (j < ggml_nelements(node) - 1) {
                    fprintf(fp, ", ");
                }
            }
            fprintf(fp, ")");
6263
        }
6264
        fprintf(fp, "\"; ]\n");
6265
6266
    }

6267
6268
    for (int i = 0; i < gb->n_nodes; i++) {
        struct ggml_tensor * node = gb->nodes[i];
6269

6270
6271
6272
6273
6274
6275
6276
        for (int j = 0; j < GGML_MAX_SRC; j++) {
            if (node->src[j]) {
                char label[16];
                snprintf(label, sizeof(label), "src %d", j);
                ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
            }
        }
6277
6278
    }

6279
6280
    for (int i = 0; i < gb->n_leafs; i++) {
        struct ggml_tensor * node = gb->leafs[i];
6281

6282
6283
6284
6285
6286
6287
6288
        for (int j = 0; j < GGML_MAX_SRC; j++) {
            if (node->src[j]) {
                char label[16];
                snprintf(label, sizeof(label), "src %d", j);
                ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
            }
        }
6289
6290
    }

6291
    fprintf(fp, "}\n");
6292

6293
    fclose(fp);
6294

6295
    GGML_LOG_INFO("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
}

////////////////////////////////////////////////////////////////////////////////

void ggml_set_input(struct ggml_tensor * tensor) {
    tensor->flags |= GGML_TENSOR_FLAG_INPUT;
}

void ggml_set_output(struct ggml_tensor * tensor) {
    tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
}

6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor) {
    GGML_UNUSED(ctx); // TODO: remove this parameter
    tensor->flags |= GGML_TENSOR_FLAG_PARAM;
}

void ggml_set_loss(struct ggml_tensor * tensor) {
    GGML_ASSERT(ggml_is_scalar(tensor));
    GGML_ASSERT(tensor->type == GGML_TYPE_F32);
    tensor->flags |= GGML_TENSOR_FLAG_LOSS;
}

6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
////////////////////////////////////////////////////////////////////////////////

void ggml_quantize_init(enum ggml_type type) {
    ggml_critical_section_start();

    switch (type) {
        case GGML_TYPE_IQ2_XXS:
        case GGML_TYPE_IQ2_XS:
        case GGML_TYPE_IQ2_S:
        case GGML_TYPE_IQ1_S:
        case GGML_TYPE_IQ1_M:   iq2xs_init_impl(type); break;
        case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
        case GGML_TYPE_IQ3_S:   iq3xs_init_impl(512); break;
        default: // nothing
            break;
    }

    ggml_critical_section_end();
}

void ggml_quantize_free(void) {
    ggml_critical_section_start();

    iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
    iq2xs_free_impl(GGML_TYPE_IQ2_XS);
    iq2xs_free_impl(GGML_TYPE_IQ1_S);
    iq3xs_free_impl(256);

    ggml_critical_section_end();
}

bool ggml_quantize_requires_imatrix(enum ggml_type type) {
    return
        type == GGML_TYPE_IQ2_XXS ||
        type == GGML_TYPE_IQ2_XS  ||
        type == GGML_TYPE_IQ1_S;//   ||
        //type == GGML_TYPE_IQ1_M;
}

size_t ggml_quantize_chunk(
        enum ggml_type   type,
           const float * src,
                  void * dst,
               int64_t   start,
               int64_t   nrows,
               int64_t   n_per_row,
           const float * imatrix) {
    const int64_t n = (int64_t) nrows * n_per_row;

    if (ggml_quantize_requires_imatrix(type)) {
        GGML_ASSERT(imatrix != NULL);
    }

    GGML_ASSERT(start % type_traits[type].blck_size == 0);
    GGML_ASSERT(start % n_per_row == 0);

    ggml_quantize_init(type); // this is noop if already initialized

    const size_t start_row = start / n_per_row;
    const size_t row_size  = ggml_row_size(type, n_per_row);

    size_t result = 0;

    switch (type) {
        case GGML_TYPE_Q4_0:    result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_Q4_1:    result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_Q5_0:    result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_Q5_1:    result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_Q8_0:    result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_Q2_K:    result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_Q3_K:    result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_Q4_K:    result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_Q5_K:    result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_Q6_K:    result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
6393
6394
        case GGML_TYPE_TQ1_0:   result = quantize_tq1_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_TQ2_0:   result = quantize_tq2_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
        case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_IQ2_XS:  result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_IQ3_S:   result = quantize_iq3_s  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_IQ2_S:   result = quantize_iq2_s  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_IQ1_S:   result = quantize_iq1_s  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_IQ1_M:   result = quantize_iq1_m  (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_IQ4_NL:  result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_IQ4_XS:  result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
        case GGML_TYPE_F16:
            {
                size_t elemsize = sizeof(ggml_fp16_t);
                ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
                result = n * elemsize;
            } break;
        case GGML_TYPE_BF16:
            {
                size_t elemsize = sizeof(ggml_bf16_t);
                ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
                result = n * elemsize;
            } break;
        case GGML_TYPE_F32:
            {
                size_t elemsize = sizeof(float);
                result = n * elemsize;
                memcpy((uint8_t *)dst + start * elemsize, src + start, result);
            } break;
        default:
            assert(false);
    }

    GGML_ASSERT(result == nrows * row_size);

    return result;
}

////////////////////////////////////////////////////////////////////////////////

struct gguf_str {
    uint64_t n;  // GGUFv2
    char * data;
};

static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
    [GGUF_TYPE_UINT8]   = sizeof(uint8_t),
    [GGUF_TYPE_INT8]    = sizeof(int8_t),
    [GGUF_TYPE_UINT16]  = sizeof(uint16_t),
    [GGUF_TYPE_INT16]   = sizeof(int16_t),
    [GGUF_TYPE_UINT32]  = sizeof(uint32_t),
    [GGUF_TYPE_INT32]   = sizeof(int32_t),
    [GGUF_TYPE_FLOAT32] = sizeof(float),
    [GGUF_TYPE_BOOL]    = sizeof(bool),
    [GGUF_TYPE_STRING]  = sizeof(struct gguf_str),
    [GGUF_TYPE_UINT64]  = sizeof(uint64_t),
    [GGUF_TYPE_INT64]   = sizeof(int64_t),
    [GGUF_TYPE_FLOAT64] = sizeof(double),
    [GGUF_TYPE_ARRAY]   = 0, // undefined
};
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");

static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
    [GGUF_TYPE_UINT8]   = "u8",
    [GGUF_TYPE_INT8]    = "i8",
    [GGUF_TYPE_UINT16]  = "u16",
    [GGUF_TYPE_INT16]   = "i16",
    [GGUF_TYPE_UINT32]  = "u32",
    [GGUF_TYPE_INT32]   = "i32",
    [GGUF_TYPE_FLOAT32] = "f32",
    [GGUF_TYPE_BOOL]    = "bool",
    [GGUF_TYPE_STRING]  = "str",
    [GGUF_TYPE_ARRAY]   = "arr",
    [GGUF_TYPE_UINT64]  = "u64",
    [GGUF_TYPE_INT64]   = "i64",
    [GGUF_TYPE_FLOAT64] = "f64",
};
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");

union gguf_value {
    uint8_t  uint8;
    int8_t   int8;
    uint16_t uint16;
    int16_t  int16;
    uint32_t uint32;
    int32_t  int32;
    float    float32;
    uint64_t uint64;
    int64_t  int64;
    double   float64;
    bool     bool_;

    struct gguf_str str;

    struct {
        enum gguf_type type;

        uint64_t n;  // GGUFv2
        void * data;
    } arr;
};

struct gguf_kv {
    struct gguf_str key;

    enum  gguf_type  type;
    union gguf_value value;
};

struct gguf_header {
    char magic[4];

    uint32_t version;
    uint64_t n_tensors; // GGUFv2
    uint64_t n_kv;      // GGUFv2
};

struct gguf_tensor_info {
    struct gguf_str name;

    uint32_t n_dims;
    uint64_t ne[GGML_MAX_DIMS];

    enum ggml_type type;

    uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`

    // for writing API
    const void * data;
    size_t size;
};

struct gguf_context {
    struct gguf_header header;

    struct gguf_kv          * kv;
    struct gguf_tensor_info * infos;

    size_t alignment;
    size_t offset;    // offset of `data` from beginning of file
    size_t size;      // size of `data` in bytes

    //uint8_t * padding;
    void * data;
};

static size_t gguf_type_size(enum gguf_type type) {
    GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
    return GGUF_TYPE_SIZE[type];
}

6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
static bool gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
    if (info->n_dims > GGML_MAX_DIMS) {
        fprintf(stderr, "%s: invalid number of dimensions (%" PRIu32 ")\n", __func__, info->n_dims);
        return false;
    }

    if (info->type < 0 || info->type >= GGML_TYPE_COUNT) {
        fprintf(stderr, "%s: invalid type (%d)\n", __func__, info->type);
        return false;
    }

    if (strlen(info->name.data) >= GGML_MAX_NAME) {
        fprintf(stderr, "%s: tensor '%s' name is too long\n", __func__, info->name.data);
        return false;
    }
6559
6560

    for (uint32_t i = 0; i < info->n_dims; ++i) {
6561
6562
6563
6564
        if (info->ne[i] <= 0) {
            fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[i]);
            return false;
        }
6565
6566
6567
    }

    // prevent overflow for total number of elements
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
    if (INT64_MAX/info->ne[1] <= info->ne[0]) {
        fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[1]);
        return false;
    }

    if (INT64_MAX/info->ne[2] <= info->ne[0]*info->ne[1]) {
        fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[2]);
        return false;
    }

    if (INT64_MAX/info->ne[3] <= info->ne[0]*info->ne[1]*info->ne[2]) {
        fprintf(stderr, "%s: invalid number of elements (%" PRIu64 ")\n", __func__, info->ne[3]);
        return false;
    }

    return true;
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
}

static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
    const size_t n = fread(dst, 1, size, file);
    *offset += n;
    return n == size;
}

static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
    p->n    = 0;
    p->data = NULL;

    bool ok = true;

    ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);

    // early exit if string length is invalid, prevents from integer overflow
    if (p->n == SIZE_MAX) {
        fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
        return false;
    }

6606
6607
6608
6609
6610
    p->data = calloc(p->n + 1, 1);
    if (!p->data) {
        fprintf(stderr, "%s: failed to allocate memory for string of length %" PRIu64 "\n", __func__, p->n);
        return false;
    }
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643

    ok = ok && gguf_fread_el(file,  p->data, p->n, offset);

    return ok;
}

static void gguf_free_kv(struct gguf_kv * kv) {
    if (kv->key.data) {
        GGML_FREE(kv->key.data);
    }

    if (kv->type == GGUF_TYPE_STRING) {
        if (kv->value.str.data) {
            GGML_FREE(kv->value.str.data);
        }
    }

    if (kv->type == GGUF_TYPE_ARRAY) {
        if (kv->value.arr.data) {
            if (kv->value.arr.type == GGUF_TYPE_STRING) {
                for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
                    struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
                    if (str->data) {
                        GGML_FREE(str->data);
                    }
                }
            }
            GGML_FREE(kv->value.arr.data);
        }
    }
}

struct gguf_context * gguf_init_empty(void) {
6644
6645
6646
6647
6648
    struct gguf_context * ctx = calloc(1, sizeof(struct gguf_context));
    if (!ctx) {
        fprintf(stderr, "%s: failed to allocate memory for context\n", __func__);
        return NULL;
    }
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693

    memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
    ctx->header.version   = GGUF_VERSION;
    ctx->header.n_tensors = 0;
    ctx->header.n_kv      = 0;

    ctx->kv    = NULL;
    ctx->infos = NULL;

    ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
    ctx->offset    = 0;
    ctx->size      = 0;

    ctx->data = NULL;

    return ctx;
}

struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
    FILE * file = ggml_fopen(fname, "rb");
    if (!file) {
        fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
        return NULL;
    }

    // offset from start of file
    size_t offset = 0;

    char magic[4];

    // check the magic before making allocations
    {
        gguf_fread_el(file, &magic, sizeof(magic), &offset);

        for (uint32_t i = 0; i < sizeof(magic); i++) {
            if (magic[i] != GGUF_MAGIC[i]) {
                fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
                fclose(file);
                return NULL;
            }
        }
    }

    bool ok = true;

6694
6695
6696
6697
6698
6699
    struct gguf_context * ctx = calloc(1, sizeof(struct gguf_context));
    if (!ctx) {
        fprintf(stderr, "%s: failed to allocate memory for context\n", __func__);
        fclose(file);
        return NULL;
    }
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737

    // read the header
    {
        strncpy(ctx->header.magic, magic, 4);

        ctx->kv    = NULL;
        ctx->infos = NULL;
        ctx->data  = NULL;

        ok = ok && gguf_fread_el(file, &ctx->header.version,   sizeof(ctx->header.version),   &offset);
        ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
        ok = ok && gguf_fread_el(file, &ctx->header.n_kv,      sizeof(ctx->header.n_kv),      &offset);

        if (ctx->header.version == 1) {
            fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
            fclose(file);
            gguf_free(ctx);
            return NULL;
        }

        // sanity-checks to prevent from integer/buffer overflows

        ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
        ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
        ok = ok && (ctx->header.n_kv      < (SIZE_MAX/2)/sizeof(struct gguf_kv));

        if (!ok) {
            fprintf(stderr, "%s: failed to read header\n", __func__);
            fclose(file);
            gguf_free(ctx);
            return NULL;
        }
    }

    // read the kv pairs
    {
        const uint64_t n_kv = ctx->header.n_kv;

6738
6739
6740
6741
6742
6743
6744
        ctx->kv = calloc(n_kv, sizeof(struct gguf_kv));
        if (!ctx->kv) {
            fprintf(stderr, "%s: failed to allocate memory for kv pairs\n", __func__);
            fclose(file);
            gguf_free(ctx);
            return NULL;
        }
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794

        for (uint64_t i = 0; i < n_kv; ++i) {
            struct gguf_kv * kv = &ctx->kv[i];

            //fprintf(stderr, "%s: reading kv %d\n", __func__, i);

            ok = ok && gguf_fread_str(file, &kv->key,                    &offset);
            ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);

            //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);

            switch (kv->type) {
                case GGUF_TYPE_UINT8:   ok = ok && gguf_fread_el (file, &kv->value.uint8,   sizeof(kv->value.uint8),   &offset); break;
                case GGUF_TYPE_INT8:    ok = ok && gguf_fread_el (file, &kv->value.int8,    sizeof(kv->value.int8),    &offset); break;
                case GGUF_TYPE_UINT16:  ok = ok && gguf_fread_el (file, &kv->value.uint16,  sizeof(kv->value.uint16),  &offset); break;
                case GGUF_TYPE_INT16:   ok = ok && gguf_fread_el (file, &kv->value.int16,   sizeof(kv->value.int16),   &offset); break;
                case GGUF_TYPE_UINT32:  ok = ok && gguf_fread_el (file, &kv->value.uint32,  sizeof(kv->value.uint32),  &offset); break;
                case GGUF_TYPE_INT32:   ok = ok && gguf_fread_el (file, &kv->value.int32,   sizeof(kv->value.int32),   &offset); break;
                case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
                case GGUF_TYPE_UINT64:  ok = ok && gguf_fread_el (file, &kv->value.uint64,  sizeof(kv->value.uint64),  &offset); break;
                case GGUF_TYPE_INT64:   ok = ok && gguf_fread_el (file, &kv->value.int64,   sizeof(kv->value.int64),   &offset); break;
                case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
                case GGUF_TYPE_BOOL:    ok = ok && gguf_fread_el (file, &kv->value.bool_,   sizeof(kv->value.bool_),   &offset); break;
                case GGUF_TYPE_STRING:  ok = ok && gguf_fread_str(file, &kv->value.str,                                &offset); break;
                case GGUF_TYPE_ARRAY:
                    {
                        ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
                        ok = ok && gguf_fread_el(file, &kv->value.arr.n,    sizeof(kv->value.arr.n),    &offset);

                        switch (kv->value.arr.type) {
                            case GGUF_TYPE_UINT8:
                            case GGUF_TYPE_INT8:
                            case GGUF_TYPE_UINT16:
                            case GGUF_TYPE_INT16:
                            case GGUF_TYPE_UINT32:
                            case GGUF_TYPE_INT32:
                            case GGUF_TYPE_FLOAT32:
                            case GGUF_TYPE_UINT64:
                            case GGUF_TYPE_INT64:
                            case GGUF_TYPE_FLOAT64:
                            case GGUF_TYPE_BOOL:
                                {
                                    // prevent from integer overflow in the malloc below
                                    if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
                                        fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
                                        fclose(file);
                                        gguf_free(ctx);
                                        return NULL;
                                    }

6795
6796
6797
6798
6799
6800
6801
                                    kv->value.arr.data = calloc(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
                                    if (!kv->value.arr.data) {
                                        fprintf(stderr, "%s: failed to allocate memory for array\n", __func__);
                                        fclose(file);
                                        gguf_free(ctx);
                                        return NULL;
                                    }
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814

                                    ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
                                } break;
                            case GGUF_TYPE_STRING:
                                {
                                    // prevent from integer overflow in the malloc below
                                    if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
                                        fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
                                        fclose(file);
                                        gguf_free(ctx);
                                        return NULL;
                                    }

6815
6816
6817
6818
6819
6820
6821
                                    kv->value.arr.data = calloc(kv->value.arr.n, sizeof(struct gguf_str));
                                    if (!kv->value.arr.data) {
                                        fprintf(stderr, "%s: failed to allocate memory for array\n", __func__);
                                        fclose(file);
                                        gguf_free(ctx);
                                        return NULL;
                                    }
6822
6823
6824
6825
6826
6827

                                    for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
                                        ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
                                    }
                                } break;
                            case GGUF_TYPE_ARRAY:
6828
6829
6830
6831
6832
                            default:
                                {
                                    fprintf(stderr, "%s: invalid array type %d\n", __func__, kv->value.arr.type);
                                    ok = false;
                                } break;
6833
6834
                        }
                    } break;
6835
6836
6837
6838
6839
                default:
                    {
                        fprintf(stderr, "%s: invalid type %d\n", __func__, kv->type);
                        ok = false;
                    } break;
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
            }

            if (!ok) {
                break;
            }
        }

        if (!ok) {
            fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
            fclose(file);
            gguf_free(ctx);
            return NULL;
        }
    }

    // read the tensor infos
    if (ctx->header.n_tensors > 0) {
6857
6858
6859
6860
6861
6862
6863
        ctx->infos = calloc(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
        if (!ctx->infos) {
            fprintf(stderr, "%s: failed to allocate memory for tensor infos\n", __func__);
            fclose(file);
            gguf_free(ctx);
            return NULL;
        }
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883

        for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
            struct gguf_tensor_info * info = &ctx->infos[i];

            for (int j = 0; j < GGML_MAX_DIMS; ++j) {
                info->ne[j] = 1;
            }

            ok = ok && gguf_fread_str(file, &info->name,                          &offset);
            ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims),  &offset);

            ok = ok && (info->n_dims <= GGML_MAX_DIMS);

            for (uint32_t j = 0; j < info->n_dims; ++j) {
                ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
            }

            ok = ok && gguf_fread_el (file, &info->type,   sizeof(info->type),    &offset);
            ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset),  &offset);

6884
            ok = ok && gguf_tensor_info_sanitize(info);
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934

            // make sure there is no duplicated tensor names
            for (uint64_t j = 0; j < i && ok; ++j) {
                if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
                    fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
                    ok = false;
                }
            }

            if (!ok) {
                fprintf(stderr, "%s: failed to read tensor info\n", __func__);
                fclose(file);
                gguf_free(ctx);
                return NULL;
            }
        }
    }

    ctx->alignment = GGUF_DEFAULT_ALIGNMENT;

    int alignment_idx = gguf_find_key(ctx, "general.alignment");
    if (alignment_idx != -1) {
        ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
    }

    // we require the data section to be aligned, so take into account any padding
    {
        const size_t offset_pad = offset % ctx->alignment;

        if (offset_pad != 0) {
            offset += ctx->alignment - offset_pad;
            fseek(file, offset, SEEK_SET);
        }
    }

    // store the current file offset - this is where the data section starts
    ctx->offset = offset;

    // compute the total size of the data section, taking into account the alignment
    {
        ctx->size = 0;
        for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
            struct gguf_tensor_info * info = &ctx->infos[i];

            const int64_t ne =
                (int64_t) info->ne[0] *
                (int64_t) info->ne[1] *
                (int64_t) info->ne[2] *
                (int64_t) info->ne[3];

6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
            if (ggml_blck_size(info->type) == 0 ) {
                // this tensor type support have been removed:
                fprintf(stderr, "%s: tensor '%s' of type %d: %s\n",
                        __func__, info->name.data, (int) info->type, ggml_type_name(info->type));
                fclose(file);
                gguf_free(ctx);
                return NULL;
            }

            if (ne % ggml_blck_size(info->type) != 0) {
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
                fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
                        __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
                fclose(file);
                gguf_free(ctx);
                return NULL;
            }

            const size_t size_cur = ggml_row_size(info->type, ne);

            ctx->size += GGML_PAD(size_cur, ctx->alignment);
        }
    }

    // load the tensor data only if requested
    if (params.ctx != NULL) {
        // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
        // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
        // the ggml_tensor structs to the appropriate locations in the binary blob

        // compute the exact size needed for the new ggml_context
        const size_t mem_size =
            params.no_alloc ?
            (ctx->header.n_tensors    )*ggml_tensor_overhead() :
            (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;

        struct ggml_init_params pdata = {
            .mem_size   = mem_size,
            .mem_buffer = NULL,
            .no_alloc   = params.no_alloc,
        };

        *params.ctx = ggml_init(pdata);
        if (*params.ctx == NULL) {
            fprintf(stderr, "%s: failed to initialize context\n", __func__);
            fclose(file);
            gguf_free(ctx);
            return NULL;
        }

        struct ggml_context * ctx_data = *params.ctx;

        struct ggml_tensor * data = NULL;

        if (!params.no_alloc) {
            data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);

            ok = ok && data != NULL;

            // read the binary blob with the tensor data
            ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);

            if (!ok) {
                fprintf(stderr, "%s: failed to read tensor data\n", __func__);
                fclose(file);
                ggml_free(ctx_data);
                gguf_free(ctx);
                return NULL;
            }

            ctx->data = data->data;
        }

        ggml_set_no_alloc(ctx_data, true);

        // create the tensors
        for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
            const int64_t ne[GGML_MAX_DIMS] = {
                ctx->infos[i].ne[0],
                ctx->infos[i].ne[1],
                ctx->infos[i].ne[2],
                ctx->infos[i].ne[3],
            };

            struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);

            ok = ok && cur != NULL;

            if (!ok) {
                break;
            }

            ggml_set_name(cur, ctx->infos[i].name.data);

            // point the data member to the appropriate location in the binary blob using the tensor infos
            if (!params.no_alloc) {
              //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
                cur->data = (char *) data->data + ctx->infos[i].offset;               // offset from data
            }
        }

        if (!ok) {
            fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
            fclose(file);
            ggml_free(ctx_data);
            gguf_free(ctx);
            return NULL;
        }

        ggml_set_no_alloc(ctx_data, params.no_alloc);
    }

    fclose(file);

    return ctx;
}

void gguf_free(struct gguf_context * ctx) {
    if (ctx == NULL) {
        return;
    }

    if (ctx->kv) {
        // free string memory - not great..
        for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
            gguf_free_kv(&ctx->kv[i]);
        }

        GGML_FREE(ctx->kv);
    }

    if (ctx->infos) {
        for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
            struct gguf_tensor_info * info = &ctx->infos[i];

            if (info->name.data) {
                GGML_FREE(info->name.data);
            }
        }

        GGML_FREE(ctx->infos);
    }

    GGML_FREE(ctx);
}

const char * gguf_type_name(enum gguf_type type) {
    return GGUF_TYPE_NAME[type];
}

int gguf_get_version(const struct gguf_context * ctx) {
    return ctx->header.version;
}

size_t gguf_get_alignment(const struct gguf_context * ctx) {
    return ctx->alignment;
}

size_t gguf_get_data_offset(const struct gguf_context * ctx) {
    return ctx->offset;
}

void * gguf_get_data(const struct gguf_context * ctx) {
    return ctx->data;
}

int gguf_get_n_kv(const struct gguf_context * ctx) {
    return ctx->header.n_kv;
}

int gguf_find_key(const struct gguf_context * ctx, const char * key) {
    // return -1 if key not found
    int keyfound = -1;

    const int n_kv = gguf_get_n_kv(ctx);

    for (int i = 0; i < n_kv; ++i) {
        if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
            keyfound = i;
            break;
        }
    }

    return keyfound;
}

const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    return ctx->kv[key_id].key.data;
}

enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    return ctx->kv[key_id].type;
}

enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
    return ctx->kv[key_id].value.arr.type;
}

const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
    return ctx->kv[key_id].value.arr.data;
}

const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
    struct gguf_kv * kv = &ctx->kv[key_id];
    struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
    return str->data;
}

int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
    return ctx->kv[key_id].value.arr.n;
}

uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
    return ctx->kv[key_id].value.uint8;
}

int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
    return ctx->kv[key_id].value.int8;
}

uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
    return ctx->kv[key_id].value.uint16;
}

int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
    return ctx->kv[key_id].value.int16;
}

uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
    return ctx->kv[key_id].value.uint32;
}

int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
    return ctx->kv[key_id].value.int32;
}

float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
    return ctx->kv[key_id].value.float32;
}

uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
    return ctx->kv[key_id].value.uint64;
}

int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
    return ctx->kv[key_id].value.int64;
}

double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
    return ctx->kv[key_id].value.float64;
}

bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
    return ctx->kv[key_id].value.bool_;
}

const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
    return ctx->kv[key_id].value.str.data;
}

const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
    GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
    GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
    GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
    return &ctx->kv[key_id].value;
}

int gguf_get_n_tensors(const struct gguf_context * ctx) {
    return ctx->header.n_tensors;
}

int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
    // return -1 if tensor not found
    int tensorfound = -1;

    const int n_tensors = gguf_get_n_tensors(ctx);

    for (int i = 0; i < n_tensors; ++i) {
        if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
            tensorfound = i;
            break;
        }
    }

    return tensorfound;
}

size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
    return ctx->infos[i].offset;
}

char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
    return ctx->infos[i].name.data;
}

enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
    return ctx->infos[i].type;
}

// returns the index
static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
    const int idx = gguf_find_key(ctx, key);
    if (idx >= 0) {
        return idx;
    }

    const int n_kv = gguf_get_n_kv(ctx);

    ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
    ctx->kv[n_kv].key.n    = strlen(key);
    ctx->kv[n_kv].key.data = strdup(key);
    ctx->header.n_kv++;

    return n_kv;
}

void gguf_remove_key(struct gguf_context * ctx, const char * key) {
    const int idx = gguf_find_key(ctx, key);
    if (idx >= 0) {
        const int n_kv = gguf_get_n_kv(ctx);
        gguf_free_kv(&ctx->kv[idx]);
        for (int i = idx; i < n_kv-1; ++i) {
            ctx->kv[i] = ctx->kv[i+1];
        }
        ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
        ctx->header.n_kv--;
    }
}

void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type        = GGUF_TYPE_UINT8;
    ctx->kv[idx].value.uint8 = val;
}

void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type       = GGUF_TYPE_INT8;
    ctx->kv[idx].value.int8 = val;
}

void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type         = GGUF_TYPE_UINT16;
    ctx->kv[idx].value.uint16 = val;
}

void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type        = GGUF_TYPE_INT16;
    ctx->kv[idx].value.int16 = val;
}

void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type         = GGUF_TYPE_UINT32;
    ctx->kv[idx].value.uint32 = val;
}

void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type        = GGUF_TYPE_INT32;
    ctx->kv[idx].value.int32 = val;
}

void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type          = GGUF_TYPE_FLOAT32;
    ctx->kv[idx].value.float32 = val;
}

void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type         = GGUF_TYPE_UINT64;
    ctx->kv[idx].value.uint64 = val;
}

void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type        = GGUF_TYPE_INT64;
    ctx->kv[idx].value.int64 = val;
}

void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type          = GGUF_TYPE_FLOAT64;
    ctx->kv[idx].value.float64 = val;
}

void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type        = GGUF_TYPE_BOOL;
    ctx->kv[idx].value.bool_ = val;
}

void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type           = GGUF_TYPE_STRING;
    ctx->kv[idx].value.str.n    = strlen(val);
    ctx->kv[idx].value.str.data = strdup(val);
}

void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type           = GGUF_TYPE_ARRAY;
    ctx->kv[idx].value.arr.type = type;
    ctx->kv[idx].value.arr.n    = n;
    ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
    memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
}

void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
    const int idx = gguf_get_or_add_key(ctx, key);

    ctx->kv[idx].type           = GGUF_TYPE_ARRAY;
    ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
    ctx->kv[idx].value.arr.n    = n;
    ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
    for (int i = 0; i < n; i++) {
        struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
        str->n    = strlen(data[i]);
        str->data = strdup(data[i]);
    }
}

// set or add KV pairs from another context
void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
    for (uint32_t i = 0; i < src->header.n_kv; i++) {
        switch (src->kv[i].type) {
            case GGUF_TYPE_UINT8:   gguf_set_val_u8  (ctx, src->kv[i].key.data, src->kv[i].value.uint8);    break;
            case GGUF_TYPE_INT8:    gguf_set_val_i8  (ctx, src->kv[i].key.data, src->kv[i].value.int8);     break;
            case GGUF_TYPE_UINT16:  gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16);   break;
            case GGUF_TYPE_INT16:   gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16);    break;
            case GGUF_TYPE_UINT32:  gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32);   break;
            case GGUF_TYPE_INT32:   gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32);    break;
            case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32);  break;
            case GGUF_TYPE_UINT64:  gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64);   break;
            case GGUF_TYPE_INT64:   gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64);    break;
            case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64);  break;
            case GGUF_TYPE_BOOL:    gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_);    break;
            case GGUF_TYPE_STRING:  gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
            case GGUF_TYPE_ARRAY:
                {
                    if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
                        const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
                        for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
                            data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
                        }
                        gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
                        GGML_FREE((void *)data);
                    } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
                        GGML_ABORT("nested arrays not supported");
                    } else {
                        gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
                    }
                } break;
            default: GGML_ABORT("invalid type");
        }
    }
}

void gguf_add_tensor(
             struct gguf_context * ctx,
        const struct ggml_tensor * tensor) {
    GGML_ASSERT(tensor);
    if (gguf_find_tensor(ctx, tensor->name) != -1) {
        GGML_ABORT("duplicated tensor name");
    }

    const int idx = ctx->header.n_tensors;
    ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));

    ctx->infos[idx].name.n    = strlen(tensor->name);
    ctx->infos[idx].name.data = strdup(tensor->name);

    for (int i = 0; i < GGML_MAX_DIMS; ++i) {
        ctx->infos[idx].ne[i] = 1;
    }

    ctx->infos[idx].n_dims = ggml_n_dims(tensor);
    for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
        ctx->infos[idx].ne[i] = tensor->ne[i];
    }

    ctx->infos[idx].type   = tensor->type;
    ctx->infos[idx].offset = 0;
    ctx->infos[idx].data   = tensor->data;
    ctx->infos[idx].size   = ggml_nbytes(tensor);

    if (ctx->header.n_tensors > 0) {
        ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
    }

    ctx->header.n_tensors++;
}

void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
    const int idx = gguf_find_tensor(ctx, name);
    if (idx < 0) {
        GGML_ABORT("tensor not found");
    }

    ctx->infos[idx].type = type;
}

void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
    const int idx = gguf_find_tensor(ctx, name);
    if (idx < 0) {
        GGML_ABORT("tensor not found");
    }

    ctx->infos[idx].data = data;
    ctx->infos[idx].size = size;

    // update offsets
    for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
        ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
    }
}

//static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
//    fwrite(&val->n,   sizeof(val->n),    1, file);
//    fwrite(val->data, sizeof(char), val->n, file);
//}
//
//static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
//    fwrite(val, sizeof(char), size, file);
//}

struct gguf_buf {
    void * data;
    size_t size;
    size_t offset;
};

static struct gguf_buf gguf_buf_init(size_t size) {
    struct gguf_buf buf = {
        /*buf.data   =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
        /*buf.size   =*/ size,
        /*buf.offset =*/ 0,
    };

    return buf;
}

static void gguf_buf_free(struct gguf_buf buf) {
    if (buf.data) {
        GGML_FREE(buf.data);
    }
}

static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
    if (buf->offset + size > buf->size) {
        buf->size = 1.5*(buf->offset + size);
        if (buf->data) {
            buf->data = realloc(buf->data, buf->size);
        }
    }
}

static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
    gguf_buf_grow(buf, sizeof(val->n) + val->n);

    if (buf->data) {
        memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
    }
    buf->offset += sizeof(val->n);

    if (buf->data) {
        memcpy((char *) buf->data + buf->offset, val->data, val->n);
    }
    buf->offset += val->n;
}

static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
    gguf_buf_grow(buf, el_size);

    if (buf->data) {
        memcpy((char *) buf->data + buf->offset, val, el_size);
    }
    buf->offset += el_size;
}

static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
    // write header
    gguf_bwrite_el(buf, &ctx->header.magic,     sizeof(ctx->header.magic));
    gguf_bwrite_el(buf, &ctx->header.version,   sizeof(ctx->header.version));
    gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
    gguf_bwrite_el(buf, &ctx->header.n_kv,      sizeof(ctx->header.n_kv));

    // write key-value pairs
    for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
        struct gguf_kv * kv = &ctx->kv[i];

        gguf_bwrite_str(buf, &kv->key);
        gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));

        switch (kv->type) {
            case GGUF_TYPE_UINT8:   gguf_bwrite_el( buf, &kv->value.uint8,   sizeof(kv->value.uint8)  ); break;
            case GGUF_TYPE_INT8:    gguf_bwrite_el (buf, &kv->value.int8,    sizeof(kv->value.int8)   ); break;
            case GGUF_TYPE_UINT16:  gguf_bwrite_el (buf, &kv->value.uint16,  sizeof(kv->value.uint16) ); break;
            case GGUF_TYPE_INT16:   gguf_bwrite_el (buf, &kv->value.int16,   sizeof(kv->value.int16)  ); break;
            case GGUF_TYPE_UINT32:  gguf_bwrite_el (buf, &kv->value.uint32,  sizeof(kv->value.uint32) ); break;
            case GGUF_TYPE_INT32:   gguf_bwrite_el (buf, &kv->value.int32,   sizeof(kv->value.int32)  ); break;
            case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
            case GGUF_TYPE_UINT64:  gguf_bwrite_el (buf, &kv->value.uint64,  sizeof(kv->value.uint64) ); break;
            case GGUF_TYPE_INT64:   gguf_bwrite_el (buf, &kv->value.int64,   sizeof(kv->value.int64)  ); break;
            case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
            case GGUF_TYPE_BOOL:    gguf_bwrite_el (buf, &kv->value.bool_,   sizeof(kv->value.bool_)  ); break;
            case GGUF_TYPE_STRING:  gguf_bwrite_str(buf, &kv->value.str                               ); break;
            case GGUF_TYPE_ARRAY:
                {
                    gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
                    gguf_bwrite_el(buf, &kv->value.arr.n,    sizeof(kv->value.arr.n)   );

                    switch (kv->value.arr.type) {
                        case GGUF_TYPE_UINT8:
                        case GGUF_TYPE_INT8:
                        case GGUF_TYPE_UINT16:
                        case GGUF_TYPE_INT16:
                        case GGUF_TYPE_UINT32:
                        case GGUF_TYPE_INT32:
                        case GGUF_TYPE_FLOAT32:
                        case GGUF_TYPE_UINT64:
                        case GGUF_TYPE_INT64:
                        case GGUF_TYPE_FLOAT64:
                        case GGUF_TYPE_BOOL:
                            {
                                gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
                            } break;
                        case GGUF_TYPE_STRING:
                            {
                                for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
                                    gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
                                }
                            } break;
                        case GGUF_TYPE_ARRAY:
                        default: GGML_ABORT("invalid type");
                    }
                } break;
            default: GGML_ABORT("invalid type");
        }
    }

    // write tensor infos
    for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
        struct gguf_tensor_info * info = &ctx->infos[i];

        gguf_bwrite_str(buf, &info->name);
        gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
        for (uint32_t j = 0; j < info->n_dims; ++j) {
            gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
        }
        gguf_bwrite_el(buf, &info->type,   sizeof(info->type));
        gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
    }

    // we require the data section to be aligned, so take into account any padding
    {
        const size_t offset     = buf->offset;
        const size_t offset_pad = GGML_PAD(offset, ctx->alignment);

        if (offset_pad != offset) {
            uint8_t pad = 0;
            for (size_t i = 0; i < offset_pad - offset; ++i) {
                gguf_bwrite_el(buf, &pad, sizeof(pad));
            }
        }
    }

    if (only_meta) {
        return;
    }

    size_t offset = 0;

    // write tensor data
    for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
        struct gguf_tensor_info * info = &ctx->infos[i];

        const size_t size     = info->size;
        const size_t size_pad = GGML_PAD(size, ctx->alignment);

        gguf_bwrite_el(buf, info->data, size);

        if (size_pad != size) {
            uint8_t pad = 0;
            for (size_t j = 0; j < size_pad - size; ++j) {
                gguf_bwrite_el(buf, &pad, sizeof(pad));
            }
        }

        GGML_ASSERT(offset == info->offset);

        offset += size_pad;
    }
}

void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
    FILE * file = ggml_fopen(fname, "wb");
    if (!file) {
        GGML_ABORT("failed to open file for writing");
    }

    struct gguf_buf buf = gguf_buf_init(16*1024);

    gguf_write_to_buf(ctx, &buf, only_meta);

    fwrite(buf.data, 1, buf.offset, file);

    gguf_buf_free(buf);

    fclose(file);
}

size_t gguf_get_meta_size(const struct gguf_context * ctx) {
    // no allocs - only compute size
    struct gguf_buf buf = gguf_buf_init(0);

    gguf_write_to_buf(ctx, &buf, true);

    return buf.offset;
}

void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
    struct gguf_buf buf = gguf_buf_init(16*1024);

    gguf_write_to_buf(ctx, &buf, true);

    memcpy(data, buf.data, buf.offset);

    gguf_buf_free(buf);
}

7715
7716
7717
void ggml_log_set(ggml_log_callback log_callback, void * user_data) {
    g_logger_state.log_callback = log_callback ? log_callback : ggml_log_callback_default;
    g_logger_state.log_callback_user_data = user_data;
7718
7719
}

7720
7721
7722
7723
7724
7725
7726
void ggml_threadpool_params_init(struct ggml_threadpool_params * p, int n_threads) {
    p->n_threads  = n_threads;
    p->prio       = 0;     // default priority (usually means normal or inherited)
    p->poll       = 50;    // hybrid-polling enabled
    p->strict_cpu = false; // no strict placement (all threads share same cpumask)
    p->paused     = false; // threads are ready to go
    memset(p->cpumask, 0, GGML_MAX_N_THREADS); // all-zero means use the default affinity (usually inherited)
7727
7728
}

7729
7730
7731
7732
struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads) {
    struct ggml_threadpool_params p;
    ggml_threadpool_params_init(&p, n_threads);
    return p;
7733
7734
}

7735
7736
7737
7738
7739
7740
bool ggml_threadpool_params_match(const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1) {
    if (p0->n_threads      != p1->n_threads  )    return false;
    if (p0->prio           != p1->prio       )    return false;
    if (p0->poll           != p1->poll       )    return false;
    if (p0->strict_cpu     != p1->strict_cpu )    return false;
    return memcmp(p0->cpumask, p1->cpumask, GGML_MAX_N_THREADS) == 0;
7741
}