"numba/roc/descriptor.py" did not exist on "1fb0017a9f3e4ff7f6e96a1f2917ca4a555bca56"
concat.cu 8.59 KB
Newer Older
1
/**
2
 * llama.cpp - commit ba1cb19cdd0d92e012e0f6e009e0620f854b6afd - do not edit this file
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
 *
 * MIT License
 *
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "concat.cuh"

// contiguous kernels
static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
    int nidx = threadIdx.x + blockIdx.x * blockDim.x;
    if (nidx >= ne0) {
        return;
    }

    int offset_dst =
        nidx +
        blockIdx.y * ne0 +
        blockIdx.z * ne0 * gridDim.y;

    if (nidx < ne00) { // src0
        int offset_src =
            nidx +
            blockIdx.y * ne00 +
            blockIdx.z * ne00 * gridDim.y;
        dst[offset_dst] = x[offset_src];
    } else {
        int offset_src =
            (nidx - ne00) +
            blockIdx.y * (ne0 - ne00) +
            blockIdx.z * (ne0 - ne00) * gridDim.y;
        dst[offset_dst] = y[offset_src];
    }
}

static __global__ void concat_f32_dim1(const float * x, const float * y, float * dst, const int ne0, const int ne01) {
    int nidx = threadIdx.x + blockIdx.x * blockDim.x;
    if (nidx >= ne0) {
        return;
    }

    int offset_dst =
        nidx +
        blockIdx.y * ne0 +
        blockIdx.z * ne0 * gridDim.y;

    if (blockIdx.y < ne01) { // src0
        int offset_src =
            nidx +
            blockIdx.y * ne0 +
            blockIdx.z * ne0 * ne01;
        dst[offset_dst] = x[offset_src];
    } else {
        int offset_src =
            nidx +
            (blockIdx.y - ne01) * ne0 +
            blockIdx.z * ne0 * (gridDim.y - ne01);
        dst[offset_dst] = y[offset_src];
    }
}

static __global__ void concat_f32_dim2(const float * x, const float * y, float * dst, const int ne0, const int ne02) {
    int nidx = threadIdx.x + blockIdx.x * blockDim.x;
    if (nidx >= ne0) {
        return;
    }

    int offset_dst =
        nidx +
        blockIdx.y * ne0 +
        blockIdx.z * ne0 * gridDim.y;

    if (blockIdx.z < ne02) { // src0
        int offset_src =
            nidx +
            blockIdx.y * ne0 +
            blockIdx.z * ne0 * gridDim.y;
        dst[offset_dst] = x[offset_src];
    } else {
        int offset_src =
            nidx +
            blockIdx.y * ne0 +
            (blockIdx.z - ne02) * ne0 *  gridDim.y;
        dst[offset_dst] = y[offset_src];
    }
}

static void concat_f32_cuda(const float * x, const float * y, float * dst, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2, int dim, cudaStream_t stream) {
    int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
    dim3 gridDim(num_blocks, ne1, ne2);
    if (dim == 0) {
        concat_f32_dim0<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne00);
        return;
    }
    if (dim == 1) {
        concat_f32_dim1<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne01);
        return;
    }
    concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
}

// non-contiguous kernel (slow)
123
124
125
template <int dim>
static __global__ void __launch_bounds__(CUDA_CONCAT_BLOCK_SIZE)
    concat_f32_non_cont(
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        const char * src0,
        const char * src1,
              char * dst,
           int64_t   ne00,
           int64_t   ne01,
           int64_t   ne02,
           int64_t   ne03,
          uint64_t   nb00,
          uint64_t   nb01,
          uint64_t   nb02,
          uint64_t   nb03,
           int64_t /*ne10*/,
           int64_t /*ne11*/,
           int64_t /*ne12*/,
           int64_t /*ne13*/,
          uint64_t   nb10,
          uint64_t   nb11,
          uint64_t   nb12,
          uint64_t   nb13,
           int64_t   ne0,
           int64_t /*ne1*/,
           int64_t /*ne2*/,
           int64_t /*ne3*/,
          uint64_t   nb0,
          uint64_t   nb1,
          uint64_t   nb2,
152
153
154
          uint64_t   nb3){
    static_assert(dim >= 0 && dim <= 3, "dim must be between 0 and 3");

155
156
157
158
159
160
    const int64_t i3 = blockIdx.z;
    const int64_t i2 = blockIdx.y;
    const int64_t i1 = blockIdx.x;

    const float * x;

161
    for (int64_t i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
162
163
164
        if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
            x = (const float *)(src0 + (i3       )*nb03 + (i2       )*nb02 + (i1       )*nb01 + (i0       )*nb00);
        } else {
165
166
167
168
169
170
171
172
173
            if constexpr (dim == 0) {
                x = (const float *) (src1 + i3 * nb13 + i2 * nb12 + i1 * nb11 + (i0 - ne00) * nb10);
            } else if constexpr (dim == 1) {
                x = (const float *) (src1 + i3 * nb13 + i2 * nb12 + (i1 - ne01) * nb11 + i0 * nb10);
            } else if constexpr (dim == 2) {
                x = (const float *) (src1 + i3 * nb13 + (i2 - ne02) * nb12 + i1 * nb11 + i0 * nb10);
            } else if constexpr (dim == 3) {
                x = (const float *) (src1 + (i3 - ne03) * nb13 + i2 * nb12 + i1 * nb11 + i0 * nb10);
            }
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        }

        float * y = (float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);

        *y = *x;
    }
}


void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const ggml_tensor * src1 = dst->src[1];

    cudaStream_t stream = ctx.stream();

    const int32_t dim = ((int32_t *) dst->op_params)[0];

    GGML_ASSERT(src0->type == GGML_TYPE_F32);
    GGML_ASSERT(src1->type == GGML_TYPE_F32);
    GGML_ASSERT(dst->type  == GGML_TYPE_F32);

    if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
        const float * src0_d = (const float *)src0->data;
        const float * src1_d = (const float *)src1->data;

        float * dst_d = (float *)dst->data;

        if (dim != 3) {
            for (int i3 = 0; i3 < dst->ne[3]; i3++) {
                concat_f32_cuda(
                        src0_d + i3 * (src0->nb[3] / 4),
                        src1_d + i3 * (src1->nb[3] / 4),
                        dst_d + i3 * ( dst->nb[3] / 4),
                        src0->ne[0], src0->ne[1], src0->ne[2],
                        dst->ne[0],  dst->ne[1],  dst->ne[2], dim, stream);
            }
        } else {
            const size_t size0 = ggml_nbytes(src0);
            const size_t size1 = ggml_nbytes(src1);

            CUDA_CHECK(cudaMemcpyAsync(dst_d,           src0_d, size0, cudaMemcpyDeviceToDevice, stream));
            CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
        }
    } else {
        dim3 grid_dim(dst->ne[1], dst->ne[2], dst->ne[3]);
219
220
221
        auto launch_kernel = [&](auto dim) {
            concat_f32_non_cont<dim><<<grid_dim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(
                (const char *) src0->data, (const char *) src1->data, (char *) dst->data,
222
223
224
225
                src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
                src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
                src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
                src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3],
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
                dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
                dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3]);
        };
        switch (dim) {
            case 0:
                launch_kernel(std::integral_constant<int, 0>{});
                break;
            case 1:
                launch_kernel(std::integral_constant<int, 1>{});
                break;
            case 2:
                launch_kernel(std::integral_constant<int, 2>{});
                break;
            case 3:
                launch_kernel(std::integral_constant<int, 3>{});
                break;
            default:
                GGML_ABORT("Invalid dim: %d", dim);
                break;
        }
246
247
    }
}