convert_nomicbert.go 4.99 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
package convert

import (
	"cmp"
	"encoding/json"
	"io/fs"
	"path/filepath"
	"slices"
	"strings"

	"github.com/ollama/ollama/fs/ggml"
)

type nomicbertModel struct {
	ModelParameters
	NLayers               uint32  `json:"n_layers"`
	NumHiddenLayers       uint32  `json:"num_hidden_layers"`
	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"`
	HiddenSize            uint32  `json:"hidden_size"`
	IntermediateSize      uint32  `json:"intermediate_size"`
	NumAttentionHeads     uint32  `json:"num_attention_heads"`
	NumKeyValueHeads      uint32  `json:"num_key_value_heads"`
	LayerNormEPS          float32 `json:"layer_norm_eps"`
	LayerNormEpsilon      float32 `json:"layer_norm_epsilon"`
	RopeFreqBase          float32 `json:"rope_theta"`
	normalizeEmbeddings   bool
	PoolingType           uint32

	// MoE parameters (only present in v2 models)
	NumExperts      uint32 `json:"num_local_experts"`
	NumExpertsUsed  uint32 `json:"num_experts_per_tok"`
	MoEEveryNLayers uint32 `json:"moe_every_n_layers"`
}

var (
	_ ModelConverter = (*nomicbertModel)(nil)
	_ moreParser     = (*nomicbertModel)(nil)
)

func (p *nomicbertModel) parseMore(fsys fs.FS) error {
	bts, err := fs.ReadFile(fsys, "modules.json")
	if err != nil {
		return err
	}

	var modules []struct {
		Type string `json:"type"`
		Path string `json:"path"`
	}

	if err := json.Unmarshal(bts, &modules); err != nil {
		return err
	}

	var pooling string
	for _, m := range modules {
		switch m.Type {
		case "sentence_transformers.models.Pooling":
			pooling = m.Path
		case "sentence_transformers.models.Normalize":
			p.normalizeEmbeddings = true
		}
	}

	if pooling != "" {
		bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
		if err != nil {
			return err
		}

		var pc struct {
			PoolingModeCLSToken   bool `json:"pooling_mode_cls_token"`
			PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
		}

		if err := json.Unmarshal(bts, &pc); err != nil {
			return err
		}

		if pc.PoolingModeMeanTokens {
			p.PoolingType = 1
		} else if pc.PoolingModeCLSToken {
			p.PoolingType = 2
		}
	}

	return nil
}

func (p *nomicbertModel) KV(t *Tokenizer) ggml.KV {
	kv := p.ModelParameters.KV(t)

	// Determine architecture based on MoE parameters (following qwen3 pattern)
	arch := "nomic-bert"
	if p.MoEEveryNLayers > 0 {
		arch += "-moe"
	}

	kv["general.architecture"] = arch
	kv["attention.causal"] = false
	kv["pooling_type"] = p.PoolingType
	kv["normalize_embeddings"] = p.normalizeEmbeddings

	kv["block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers)

	if contextLength := p.MaxPositionEmbeddings; contextLength > 0 {
		kv["context_length"] = contextLength
	}

	if embeddingLength := p.HiddenSize; embeddingLength > 0 {
		kv["embedding_length"] = p.HiddenSize
	}

	if feedForwardLength := p.IntermediateSize; feedForwardLength > 0 {
		kv["feed_forward_length"] = p.IntermediateSize
	}

	if headCount := p.NumAttentionHeads; headCount > 0 {
		kv["attention.head_count"] = p.NumAttentionHeads
	}

	if kvHeadCount := p.NumKeyValueHeads; kvHeadCount > 0 {
		kv["attention.head_count_kv"] = p.NumKeyValueHeads
	}

	if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon); layerNormEpsilon > 0 {
		kv["attention.layer_norm_epsilon"] = layerNormEpsilon
	}

	if p.RopeFreqBase > 0 {
		kv["rope.freq_base"] = p.RopeFreqBase
	}

	// MoE specific parameters (only if MoE is enabled)
	if p.NumExperts > 0 {
		kv["expert_count"] = p.NumExperts
	}

	if p.NumExpertsUsed > 0 {
		kv["expert_used_count"] = p.NumExpertsUsed
	}

	if p.MoEEveryNLayers > 0 {
		kv["moe_every_n_layers"] = p.MoEEveryNLayers
	}

	kv["tokenizer.ggml.model"] = "bert"
	kv["tokenizer.ggml.token_type_count"] = uint32(2)

	// convert to phantom space tokens
	for i, e := range t.Tokens {
		switch {
		case strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]"):
			// noop - keep special tokens as-is
		case strings.HasPrefix(e, "##"):
			t.Tokens[i] = e[2:]
		default:
			t.Tokens[i] = "\u2581" + e
		}
	}

	kv["tokenizer.ggml.tokens"] = t.Tokens

	return kv
}

func (p *nomicbertModel) Tensors(ts []Tensor) []*ggml.Tensor {
	out := make([]*ggml.Tensor, 0, len(ts))
	for _, t := range ts {
		if slices.Contains([]string{
			"embeddings.position_ids",
			"pooler.dense.weight",
			"pooler.dense.bias",
		}, t.Name()) {
			continue
		}

		out = append(out, &ggml.Tensor{
			Name:     t.Name(),
			Kind:     t.Kind(),
			Shape:    t.Shape(),
			WriterTo: t,
		})
	}

	return out
}

func (nomicbertModel) Replacements() []string {
	return []string{
		"encoder.layer", "blk",
		"encoder.layers", "blk",
		"embeddings.word_embeddings", "token_embd",
		"embeddings.token_type_embeddings", "token_types",
		"embeddings.LayerNorm", "token_embd_norm",

		"attention.self.qkv", "attn_qkv",

		"attention.output.dense", "attn_output",
		"attention.output.LayerNorm", "attn_output_norm",

		"mlp.up", "ffn_up",
		"mlp.down", "ffn_down",

		"mlp.router", "ffn_gate_inp",
		"mlp.experts.up", "ffn_up_exps",
		"mlp.experts.down", "ffn_down_exps",

		"intermediate.dense", "ffn_up",
		"output.dense", "ffn_down",
		"output.LayerNorm", "layer_output_norm",
	}
}