model.go 5.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
package qwen3vl

import (
	"bytes"
	"image"
	"slices"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Model struct {
	model.Base
	model.TextProcessor

	*TextModel
	*VisionModel `gguf:"v"`

	ImageProcessor

	positionCache []int32
}

func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
	if len(m.VisionModel.Layers) == 0 {
		return nil, model.ErrNoVisionModel
	}

	img, _, err := image.Decode(bytes.NewReader(multimodalData))
	if err != nil {
		return nil, err
	}

	pixelValues, grid, err := m.ProcessImage(ctx, img)
	if err != nil {
		return nil, err
	}

	// Calculate tensor dimensions
	visionOutputs, deepstackVisualEmbeds := m.VisionModel.Forward(ctx, pixelValues, grid)
	mm := []input.Multimodal{{Tensor: visionOutputs, Data: grid}}
	for i := range deepstackVisualEmbeds {
		mm = append(mm, input.Multimodal{Tensor: deepstackVisualEmbeds[i]})
	}

	return mm, nil
}

var (
	tokenVision      int32 = 151655
	tokenVisionStart int32 = 151652
	tokenVisionEnd   int32 = 151653
)

type modelInput struct {
	*input.Input
	position int32
}

// PostTokenize arranges Qwen 3 VL's inputs for the forward pass
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
	m.positionCache = m.positionCache[:0]
	return slices.Collect(func(yield func(*input.Input) bool) {
		for i := range inputs {
			s := []modelInput{{Input: inputs[i]}}
			if mm := inputs[i].Multimodal; mm != nil {
				t := mm[0].Tensor
				s = slices.Repeat([]modelInput{
					{
						position: int32(i + 1),
						Input:    &input.Input{Token: tokenVision},
					},
				}, t.Dim(1)+1+1)

				s[0] = modelInput{
					Input:    &input.Input{Token: tokenVisionStart},
					position: int32(i),
				}

				s[len(s)-1] = modelInput{
					Input:    &input.Input{Token: tokenVisionEnd},
					position: int32(i + mm[0].Data.(*Grid).Width/m.spatialMergeSize + 1),
				}

				s[1] = modelInput{
					Input: &input.Input{
						Token:          tokenVision,
						Multimodal:     inputs[i].Multimodal,
						MultimodalHash: inputs[i].MultimodalHash,
						SameBatch:      t.Dim(1),
					},
					position: int32(i + 1),
				}
			}

			for _, e := range s {
				position := e.position
				if position == 0 && len(m.positionCache) > 0 {
					position = m.positionCache[len(m.positionCache)-1] + 1
				}

				m.positionCache = append(m.positionCache, position)
				if !yield(e.Input) {
					return
				}
			}
		}
	}), nil
}

func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
	positionSlice := slices.Collect(makeSlice2D[int32](3, len(batch.Positions)))
	for i, id := range batch.Positions {
		if id < int32(len(m.positionCache)) {
			id = m.positionCache[id]
		} else if len(m.positionCache) > 0 {
			id = id - int32(len(m.positionCache)) + m.positionCache[len(m.positionCache)-1] + 1
		}

		positionSlice[0][i] = id
		positionSlice[1][i] = id
		positionSlice[2][i] = id
	}

	hiddenStates := m.TextModel.TokenEmbedding.Forward(ctx, batch.Inputs).Duplicate(ctx)

	var deepstackVisualEmbeds []ml.Tensor
	for _, mi := range batch.Multimodal {
		visionOutputs := mi.Multimodal[0].Tensor
		ctx.Forward(visionOutputs.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))

		if grid, ok := mi.Multimodal[0].Data.(*Grid); ok {
			for i := range visionOutputs.Dim(1) {
				w := grid.Width / m.spatialMergeSize
				positionSlice[1][mi.Index+i] += int32(i / w)
				positionSlice[2][mi.Index+i] += int32(i % w)
			}
		}

		deepstackVisualEmbeds = make([]ml.Tensor, len(mi.Multimodal[1:]))
		for i, mm := range mi.Multimodal[1:] {
			deepstackVisualEmbeds[i] = ctx.Input().Zeros(mm.Tensor.DType(), hiddenStates.Shape()...)
			ctx.Forward(mm.Tensor.Copy(ctx, deepstackVisualEmbeds[i].View(ctx, mi.Index*deepstackVisualEmbeds[i].Stride(1), mm.Tensor.Dim(0)*mm.Tensor.Dim(1))))
		}
	}

	positions := ctx.Input().FromInts(slices.Concat(positionSlice...), len(positionSlice[0]), len(positionSlice))
	cos, sin := m.rotaryEmbedding(ctx, positions)
	for i, layer := range m.TextModel.Layers {
		if m.Cache != nil {
			m.Cache.SetLayer(i)
		}

		var outputs ml.Tensor
		if i == len(m.TextModel.Layers)-1 {
			outputs = batch.Outputs
		}

		hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, outputs, m.Cache, m.Options)
		if i < len(deepstackVisualEmbeds) {
			hiddenStates = hiddenStates.Add(ctx, deepstackVisualEmbeds[i])
		}
	}

	hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, 1e-06)
	return m.Output.Forward(ctx, hiddenStates), nil
}

func New(c fs.Config) (model.Model, error) {
	m := Model{
		TextProcessor: model.NewBytePairEncoding(
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Ints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
				BOS:    []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
				EOS: append(
					[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
					c.Ints("tokenizer.ggml.eos_token_ids")...,
				),
			},
			`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
		),
		TextModel:      newTextModel(c),
		VisionModel:    newVisionModel(c),
		ImageProcessor: newImageProcessor(c),
	}

	m.Cache = kvcache.NewCausalCache(func(ctx ml.Context, layer int, key, position ml.Tensor) (ml.Tensor, error) {
		m.positionCache = nil
		return nil, kvcache.ErrNotSupported
	})
	return &m, nil
}

func init() {
	model.Register("qwen3vl", New)
	model.Register("qwen3vlmoe", New)
}