README.md 42.7 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
# LLaMA.cpp HTTP Server

Fast, lightweight, pure C/C++ HTTP server based on [httplib](https://github.com/yhirose/cpp-httplib), [nlohmann::json](https://github.com/nlohmann/json) and **llama.cpp**.

Set of LLM REST APIs and a simple web front end to interact with llama.cpp.

**Features:**
xuxzh1's avatar
init  
xuxzh1 committed
8
 * LLM inference of F16 and quantized models on GPU and CPU
mashun1's avatar
v1  
mashun1 committed
9
10
11
12
13
14
15
16
17
 * [OpenAI API](https://github.com/openai/openai-openapi) compatible chat completions and embeddings routes
 * Parallel decoding with multi-user support
 * Continuous batching
 * Multimodal (wip)
 * Monitoring endpoints
 * Schema-constrained JSON response format

The project is under active development, and we are [looking for feedback and contributors](https://github.com/ggerganov/llama.cpp/issues/4216).

xuxzh1's avatar
init  
xuxzh1 committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
## Usage

```
usage: ./llama-server [options]

general:

  -h,    --help, --usage          print usage and exit
         --version                show version and build info
  -v,    --verbose                print verbose information
         --verbosity N            set specific verbosity level (default: 0)
         --verbose-prompt         print a verbose prompt before generation (default: false)
         --no-display-prompt      don't print prompt at generation (default: false)
  -co,   --color                  colorise output to distinguish prompt and user input from generations (default: false)
  -s,    --seed SEED              RNG seed (default: -1, use random seed for < 0)
  -t,    --threads N              number of threads to use during generation (default: 8)
  -tb,   --threads-batch N        number of threads to use during batch and prompt processing (default: same as --threads)
  -td,   --threads-draft N        number of threads to use during generation (default: same as --threads)
  -tbd,  --threads-batch-draft N  number of threads to use during batch and prompt processing (default: same as --threads-draft)
         --draft N                number of tokens to draft for speculative decoding (default: 5)
  -ps,   --p-split N              speculative decoding split probability (default: 0.1)
  -lcs,  --lookup-cache-static FNAME
                                  path to static lookup cache to use for lookup decoding (not updated by generation)
  -lcd,  --lookup-cache-dynamic FNAME
                                  path to dynamic lookup cache to use for lookup decoding (updated by generation)
  -c,    --ctx-size N             size of the prompt context (default: 0, 0 = loaded from model)
  -n,    --predict N              number of tokens to predict (default: -1, -1 = infinity, -2 = until context filled)
  -b,    --batch-size N           logical maximum batch size (default: 2048)
  -ub,   --ubatch-size N          physical maximum batch size (default: 512)
         --keep N                 number of tokens to keep from the initial prompt (default: 0, -1 = all)
         --chunks N               max number of chunks to process (default: -1, -1 = all)
  -fa,   --flash-attn             enable Flash Attention (default: disabled)
  -p,    --prompt PROMPT          prompt to start generation with
                                  in conversation mode, this will be used as system prompt
                                  (default: '')
  -f,    --file FNAME             a file containing the prompt (default: none)
         --in-file FNAME          an input file (repeat to specify multiple files)
  -bf,   --binary-file FNAME      binary file containing the prompt (default: none)
  -e,    --escape                 process escapes sequences (\n, \r, \t, \', \", \\) (default: true)
         --no-escape              do not process escape sequences
  -ptc,  --print-token-count N    print token count every N tokens (default: -1)
         --prompt-cache FNAME     file to cache prompt state for faster startup (default: none)
         --prompt-cache-all       if specified, saves user input and generations to cache as well
                                  not supported with --interactive or other interactive options
         --prompt-cache-ro        if specified, uses the prompt cache but does not update it
  -r,    --reverse-prompt PROMPT  halt generation at PROMPT, return control in interactive mode
                                  can be specified more than once for multiple prompts
  -sp,   --special                special tokens output enabled (default: false)
  -cnv,  --conversation           run in conversation mode, does not print special tokens and suffix/prefix
                                  if suffix/prefix are not specified, default chat template will be used
                                  (default: false)
  -i,    --interactive            run in interactive mode (default: false)
  -if,   --interactive-first      run in interactive mode and wait for input right away (default: false)
  -mli,  --multiline-input        allows you to write or paste multiple lines without ending each in '\'
         --in-prefix-bos          prefix BOS to user inputs, preceding the `--in-prefix` string
         --in-prefix STRING       string to prefix user inputs with (default: empty)
         --in-suffix STRING       string to suffix after user inputs with (default: empty)
         --spm-infill             use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled)

sampling:

         --samplers SAMPLERS      samplers that will be used for generation in the order, separated by ';'
                                  (default: top_k;tfs_z;typical_p;top_p;min_p;temperature)
         --sampling-seq SEQUENCE  simplified sequence for samplers that will be used (default: kfypmt)
         --ignore-eos             ignore end of stream token and continue generating (implies --logit-bias EOS-inf)
         --penalize-nl            penalize newline tokens (default: false)
         --temp N                 temperature (default: 0.8)
         --top-k N                top-k sampling (default: 40, 0 = disabled)
         --top-p N                top-p sampling (default: 0.9, 1.0 = disabled)
         --min-p N                min-p sampling (default: 0.1, 0.0 = disabled)
         --tfs N                  tail free sampling, parameter z (default: 1.0, 1.0 = disabled)
         --typical N              locally typical sampling, parameter p (default: 1.0, 1.0 = disabled)
         --repeat-last-n N        last n tokens to consider for penalize (default: 64, 0 = disabled, -1 = ctx_size)
         --repeat-penalty N       penalize repeat sequence of tokens (default: 1.0, 1.0 = disabled)
         --presence-penalty N     repeat alpha presence penalty (default: 0.0, 0.0 = disabled)
         --frequency-penalty N    repeat alpha frequency penalty (default: 0.0, 0.0 = disabled)
         --dynatemp-range N       dynamic temperature range (default: 0.0, 0.0 = disabled)
         --dynatemp-exp N         dynamic temperature exponent (default: 1.0)
         --mirostat N             use Mirostat sampling.
                                  Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.
                                  (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)
         --mirostat-lr N          Mirostat learning rate, parameter eta (default: 0.1)
         --mirostat-ent N         Mirostat target entropy, parameter tau (default: 5.0)
         -l TOKEN_ID(+/-)BIAS     modifies the likelihood of token appearing in the completion,
                                  i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',
                                  or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'
         --cfg-negative-prompt PROMPT
                                  negative prompt to use for guidance (default: '')
         --cfg-negative-prompt-file FNAME
                                  negative prompt file to use for guidance
         --cfg-scale N            strength of guidance (default: 1.0, 1.0 = disable)
         --chat-template JINJA_TEMPLATE
                                  set custom jinja chat template (default: template taken from model's metadata)
                                  if suffix/prefix are specified, template will be disabled
                                  only commonly used templates are accepted:
                                  https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template

grammar:

         --grammar GRAMMAR        BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '')
         --grammar-file FNAME     file to read grammar from
  -j,    --json-schema SCHEMA     JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object
                                  For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead

embedding:

         --pooling {none,mean,cls,last}
                                  pooling type for embeddings, use model default if unspecified
         --attention {causal,non-causal}
                                  attention type for embeddings, use model default if unspecified

context hacking:

         --rope-scaling {none,linear,yarn}
                                  RoPE frequency scaling method, defaults to linear unless specified by the model
         --rope-scale N           RoPE context scaling factor, expands context by a factor of N
         --rope-freq-base N       RoPE base frequency, used by NTK-aware scaling (default: loaded from model)
         --rope-freq-scale N      RoPE frequency scaling factor, expands context by a factor of 1/N
         --yarn-orig-ctx N        YaRN: original context size of model (default: 0 = model training context size)
         --yarn-ext-factor N      YaRN: extrapolation mix factor (default: -1.0, 0.0 = full interpolation)
         --yarn-attn-factor N     YaRN: scale sqrt(t) or attention magnitude (default: 1.0)
         --yarn-beta-slow N       YaRN: high correction dim or alpha (default: 1.0)
         --yarn-beta-fast N       YaRN: low correction dim or beta (default: 32.0)
  -gan,  --grp-attn-n N           group-attention factor (default: 1)
  -gaw,  --grp-attn-w N           group-attention width (default: 512.0)
  -dkvc, --dump-kv-cache          verbose print of the KV cache
  -nkvo, --no-kv-offload          disable KV offload
  -ctk,  --cache-type-k TYPE      KV cache data type for K (default: f16)
  -ctv,  --cache-type-v TYPE      KV cache data type for V (default: f16)

perplexity:

         --all-logits             return logits for all tokens in the batch (default: false)
         --hellaswag              compute HellaSwag score over random tasks from datafile supplied with -f
         --hellaswag-tasks N      number of tasks to use when computing the HellaSwag score (default: 400)
         --winogrande             compute Winogrande score over random tasks from datafile supplied with -f
         --winogrande-tasks N     number of tasks to use when computing the Winogrande score (default: 0)
         --multiple-choice        compute multiple choice score over random tasks from datafile supplied with -f
         --multiple-choice-tasks N
                                  number of tasks to use when computing the multiple choice score (default: 0)
         --kl-divergence          computes KL-divergence to logits provided via --kl-divergence-base
         --ppl-stride N           stride for perplexity calculation (default: 0)
         --ppl-output-type {0,1}  output type for perplexity calculation (default: 0)

parallel:

  -dt,   --defrag-thold N         KV cache defragmentation threshold (default: -1.0, < 0 - disabled)
  -np,   --parallel N             number of parallel sequences to decode (default: 1)
  -ns,   --sequences N            number of sequences to decode (default: 1)
  -cb,   --cont-batching          enable continuous batching (a.k.a dynamic batching) (default: enabled)

multi-modality:

         --mmproj FILE            path to a multimodal projector file for LLaVA. see examples/llava/README.md
         --image FILE             path to an image file. use with multimodal models. Specify multiple times for batching

backend:

         --rpc SERVERS            comma separated list of RPC servers
         --mlock                  force system to keep model in RAM rather than swapping or compressing
         --no-mmap                do not memory-map model (slower load but may reduce pageouts if not using mlock)
         --numa TYPE              attempt optimizations that help on some NUMA systems
                                    - distribute: spread execution evenly over all nodes
                                    - isolate: only spawn threads on CPUs on the node that execution started on
                                    - numactl: use the CPU map provided by numactl
                                  if run without this previously, it is recommended to drop the system page cache before using this
                                  see https://github.com/ggerganov/llama.cpp/issues/1437

model:

         --check-tensors          check model tensor data for invalid values (default: false)
         --override-kv KEY=TYPE:VALUE
                                  advanced option to override model metadata by key. may be specified multiple times.
                                  types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false
         --lora FNAME             apply LoRA adapter (implies --no-mmap)
         --lora-scaled FNAME S    apply LoRA adapter with user defined scaling S (implies --no-mmap)
         --lora-base FNAME        optional model to use as a base for the layers modified by the LoRA adapter
         --control-vector FNAME   add a control vector
                                  note: this argument can be repeated to add multiple control vectors
         --control-vector-scaled FNAME SCALE
                                  add a control vector with user defined scaling SCALE
                                  note: this argument can be repeated to add multiple scaled control vectors
         --control-vector-layer-range START END
                                  layer range to apply the control vector(s) to, start and end inclusive
  -m,    --model FNAME            model path (default: models/$filename with filename from --hf-file
                                  or --model-url if set, otherwise models/7B/ggml-model-f16.gguf)
  -md,   --model-draft FNAME      draft model for speculative decoding (default: unused)
  -mu,   --model-url MODEL_URL    model download url (default: unused)
  -hfr,  --hf-repo REPO           Hugging Face model repository (default: unused)
  -hff,  --hf-file FILE           Hugging Face model file (default: unused)
  -hft,  --hf-token TOKEN         Hugging Face access token (default: value from HF_TOKEN environment variable)

server:

         --host HOST              ip address to listen (default: 127.0.0.1)
         --port PORT              port to listen (default: 8080)
         --path PATH              path to serve static files from (default: )
         --embedding(s)           restrict to only support embedding use case; use only with dedicated embedding models (default: disabled)
         --api-key KEY            API key to use for authentication (default: none)
         --api-key-file FNAME     path to file containing API keys (default: none)
         --ssl-key-file FNAME     path to file a PEM-encoded SSL private key
         --ssl-cert-file FNAME    path to file a PEM-encoded SSL certificate
         --timeout N              server read/write timeout in seconds (default: 600)
         --threads-http N         number of threads used to process HTTP requests (default: -1)
         --system-prompt-file FNAME
                                  set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications
         --log-format {text,json}
                                  log output format: json or text (default: json)
         --metrics                enable prometheus compatible metrics endpoint (default: disabled)
         --no-slots               disables slots monitoring endpoint (default: enabled)
         --slot-save-path PATH    path to save slot kv cache (default: disabled)
         --chat-template JINJA_TEMPLATE
                                  set custom jinja chat template (default: template taken from model's metadata)
                                  only commonly used templates are accepted:
                                  https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  -sps,  --slot-prompt-similarity SIMILARITY
                                  how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)
         --lora-init-without-apply
                                  load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled)

logging:

         --simple-io              use basic IO for better compatibility in subprocesses and limited consoles
  -ld,   --logdir LOGDIR          path under which to save YAML logs (no logging if unset)
         --log-test               Run simple logging test
         --log-disable            Disable trace logs
         --log-enable             Enable trace logs
         --log-file FNAME         Specify a log filename (without extension)
         --log-new                Create a separate new log file on start. Each log file will have unique name: "<name>.<ID>.log"
         --log-append             Don't truncate the old log file.
```

mashun1's avatar
v1  
mashun1 committed
250
251
252

## Build

xuxzh1's avatar
init  
xuxzh1 committed
253
`llama-server` is built alongside everything else from the root of the project
mashun1's avatar
v1  
mashun1 committed
254
255
256
257

- Using `make`:

  ```bash
xuxzh1's avatar
init  
xuxzh1 committed
258
  make llama-server
mashun1's avatar
v1  
mashun1 committed
259
260
261
262
263
264
  ```

- Using `CMake`:

  ```bash
  cmake -B build
xuxzh1's avatar
init  
xuxzh1 committed
265
  cmake --build build --config Release -t llama-server
mashun1's avatar
v1  
mashun1 committed
266
267
  ```

xuxzh1's avatar
init  
xuxzh1 committed
268
  Binary is at `./build/bin/llama-server`
mashun1's avatar
v1  
mashun1 committed
269
270
271

## Build with SSL

xuxzh1's avatar
init  
xuxzh1 committed
272
`llama-server` can also be built with SSL support using OpenSSL 3
mashun1's avatar
v1  
mashun1 committed
273
274
275
276
277
278
279

- Using `make`:

  ```bash
  # NOTE: For non-system openssl, use the following:
  #   CXXFLAGS="-I /path/to/openssl/include"
  #   LDFLAGS="-L /path/to/openssl/lib"
xuxzh1's avatar
init  
xuxzh1 committed
280
  make LLAMA_SERVER_SSL=true llama-server
mashun1's avatar
v1  
mashun1 committed
281
282
283
284
285
286
  ```

- Using `CMake`:

  ```bash
  cmake -B build -DLLAMA_SERVER_SSL=ON
xuxzh1's avatar
init  
xuxzh1 committed
287
  cmake --build build --config Release -t llama-server
mashun1's avatar
v1  
mashun1 committed
288
289
290
291
292
293
294
295
296
  ```

## Quick Start

To get started right away, run the following command, making sure to use the correct path for the model you have:

### Unix-based systems (Linux, macOS, etc.)

```bash
xuxzh1's avatar
init  
xuxzh1 committed
297
./llama-server -m models/7B/ggml-model.gguf -c 2048
mashun1's avatar
v1  
mashun1 committed
298
299
300
301
302
```

### Windows

```powershell
xuxzh1's avatar
init  
xuxzh1 committed
303
llama-server.exe -m models\7B\ggml-model.gguf -c 2048
mashun1's avatar
v1  
mashun1 committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
```

The above command will start a server that by default listens on `127.0.0.1:8080`.
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.

### Docker

```bash
docker run -p 8080:8080 -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080

# or, with CUDA:
docker run -p 8080:8080 -v /path/to/models:/models --gpus all ghcr.io/ggerganov/llama.cpp:server-cuda -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080 --n-gpu-layers 99
```

## Testing with CURL

Using [curl](https://curl.se/). On Windows, `curl.exe` should be available in the base OS.

```sh
curl --request POST \
    --url http://localhost:8080/completion \
    --header "Content-Type: application/json" \
    --data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'
```

## Advanced testing

We implemented a [server test framework](./tests/README.md) using human-readable scenario.

*Before submitting an issue, please try to reproduce it with this format.*

## Node JS Test

You need to have [Node.js](https://nodejs.org/en) installed.

```bash
mkdir llama-client
cd llama-client
```

Create a index.js file and put this inside:

```javascript
const prompt = `Building a website can be done in 10 simple steps:`;

async function Test() {
    let response = await fetch("http://127.0.0.1:8080/completion", {
        method: 'POST',
        body: JSON.stringify({
            prompt,
            n_predict: 512,
        })
    })
    console.log((await response.json()).content)
}

Test()
```

And run it:

```bash
node index.js
```

## API Endpoints

xuxzh1's avatar
init  
xuxzh1 committed
371
372
### GET `/health`: Returns the current state of the server

mashun1's avatar
v1  
mashun1 committed
373
374
375
376
377
378
379
380
  - 503 -> `{"status": "loading model"}` if the model is still being loaded.
  - 500 -> `{"status": "error"}` if the model failed to load.
  - 200 -> `{"status": "ok", "slots_idle": 1, "slots_processing": 2 }` if the model is successfully loaded and the server is ready for further requests mentioned below.
  - 200 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if no slots are currently available.
  - 503 -> `{"status": "no slot available", "slots_idle": 0, "slots_processing": 32}` if the query parameter `fail_on_no_slot` is provided and no slots are currently available.

  If the query parameter `include_slots` is passed, `slots` field will contain internal slots data except if `--slots-endpoint-disable` is set.

xuxzh1's avatar
init  
xuxzh1 committed
381
### POST `/completion`: Given a `prompt`, it returns the predicted completion.
mashun1's avatar
v1  
mashun1 committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

    *Options:*

    `prompt`: Provide the prompt for this completion as a string or as an array of strings or numbers representing tokens. Internally, if `cache_prompt` is `true`, the prompt is compared to the previous completion and only the "unseen" suffix is evaluated. A `BOS` token is inserted at the start, if all of the following conditions are true:

      - The prompt is a string or an array with the first element given as a string
      - The model's `tokenizer.ggml.add_bos_token` metadata is `true`
      - The system prompt is empty

    `temperature`: Adjust the randomness of the generated text. Default: `0.8`

    `dynatemp_range`: Dynamic temperature range. The final temperature will be in the range of `[temperature - dynatemp_range; temperature + dynatemp_range]` Default: `0.0`, which is disabled.

    `dynatemp_exponent`: Dynamic temperature exponent. Default: `1.0`

    `top_k`: Limit the next token selection to the K most probable tokens.  Default: `40`

    `top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P. Default: `0.95`

    `min_p`: The minimum probability for a token to be considered, relative to the probability of the most likely token. Default: `0.05`

    `n_predict`: Set the maximum number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. Default: `-1`, where `-1` is infinity.

xuxzh1's avatar
init  
xuxzh1 committed
405
    `n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded. The number excludes the BOS token.
mashun1's avatar
v1  
mashun1 committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    By default, this value is set to `0`, meaning no tokens are kept. Use `-1` to retain all tokens from the prompt.

    `stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.

    `stop`: Specify a JSON array of stopping strings.
    These words will not be included in the completion, so make sure to add them to the prompt for the next iteration. Default: `[]`

    `tfs_z`: Enable tail free sampling with parameter z. Default: `1.0`, which is disabled.

    `typical_p`: Enable locally typical sampling with parameter p. Default: `1.0`, which is disabled.

    `repeat_penalty`: Control the repetition of token sequences in the generated text. Default: `1.1`

    `repeat_last_n`: Last n tokens to consider for penalizing repetition. Default: `64`, where `0` is disabled and `-1` is ctx-size.

    `penalize_nl`: Penalize newline tokens when applying the repeat penalty. Default: `true`

    `presence_penalty`: Repeat alpha presence penalty. Default: `0.0`, which is disabled.

    `frequency_penalty`: Repeat alpha frequency penalty. Default: `0.0`, which is disabled.

    `penalty_prompt`: This will replace the `prompt` for the purpose of the penalty evaluation. Can be either `null`, a string or an array of numbers representing tokens. Default: `null`, which is to use the original `prompt`.

    `mirostat`: Enable Mirostat sampling, controlling perplexity during text generation. Default: `0`, where `0` is disabled, `1` is Mirostat, and `2` is Mirostat 2.0.

    `mirostat_tau`: Set the Mirostat target entropy, parameter tau. Default: `5.0`

    `mirostat_eta`: Set the Mirostat learning rate, parameter eta.  Default: `0.1`

    `grammar`: Set grammar for grammar-based sampling.  Default: no grammar

    `json_schema`: Set a JSON schema for grammar-based sampling (e.g. `{"items": {"type": "string"}, "minItems": 10, "maxItems": 100}` of a list of strings, or `{}` for any JSON). See [tests](../../tests/test-json-schema-to-grammar.cpp) for supported features.  Default: no JSON schema.

    `seed`: Set the random number generator (RNG) seed.  Default: `-1`, which is a random seed.

    `ignore_eos`: Ignore end of stream token and continue generating.  Default: `false`

    `logit_bias`: Modify the likelihood of a token appearing in the generated text completion. For example, use `"logit_bias": [[15043,1.0]]` to increase the likelihood of the token 'Hello', or `"logit_bias": [[15043,-1.0]]` to decrease its likelihood. Setting the value to false, `"logit_bias": [[15043,false]]` ensures that the token `Hello` is never produced. The tokens can also be represented as strings, e.g. `[["Hello, World!",-0.5]]` will reduce the likelihood of all the individual tokens that represent the string `Hello, World!`, just like the `presence_penalty` does. Default: `[]`

    `n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token given the sampling settings. Note that for temperature < 0 the tokens are sampled greedily but token probabilities are still being calculated via a simple softmax of the logits without considering any other sampler settings. Default: `0`

    `min_keep`: If greater than 0, force samplers to return N possible tokens at minimum. Default: `0`

    `image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.

    `id_slot`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot.  Default: `-1`

xuxzh1's avatar
init  
xuxzh1 committed
453
    `cache_prompt`: Re-use KV cache from a previous request if possible. This way the common prefix does not have to be re-processed, only the suffix that differs between the requests. Because (depending on the backend) the logits are **not** guaranteed to be bit-for-bit identical for different batch sizes (prompt processing vs. token generation) enabling this option can cause nondeterministic results. Default: `false`
mashun1's avatar
v1  
mashun1 committed
454
455
456
457
458

    `system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)

    `samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["top_k", "tfs_z", "typical_p", "top_p", "min_p", "temperature"]` - these are all the available values.

xuxzh1's avatar
init  
xuxzh1 committed
459
**Response format**
mashun1's avatar
v1  
mashun1 committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

- Note: When using streaming mode (`stream`), only `content` and `stop` will be returned until end of completion.

- `completion_probabilities`: An array of token probabilities for each completion. The array's length is `n_predict`. Each item in the array has the following structure:

```json
{
  "content": "<the token selected by the model>",
  "probs": [
    {
      "prob": float,
      "tok_str": "<most likely token>"
    },
    {
      "prob": float,
      "tok_str": "<second most likely token>"
    },
    ...
  ]
},
```

Notice that each `probs` is an array of length `n_probs`.

- `content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string.
- `stop`: Boolean for use with `stream` to check whether the generation has stopped (Note: This is not related to stopping words array `stop` from input options)
- `generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model`. These options may differ from the original ones in some way (e.g. bad values filtered out, strings converted to tokens, etc.).
- `model`: The path to the model loaded with `-m`
- `prompt`: The provided `prompt`
- `stopped_eos`: Indicating whether the completion has stopped because it encountered the EOS token
- `stopped_limit`: Indicating whether the completion stopped because `n_predict` tokens were generated before stop words or EOS was encountered
- `stopped_word`: Indicating whether the completion stopped due to encountering a stopping word from `stop` JSON array provided
- `stopping_word`: The stopping word encountered which stopped the generation (or "" if not stopped due to a stopping word)
- `timings`: Hash of timing information about the completion such as the number of tokens `predicted_per_second`
- `tokens_cached`: Number of tokens from the prompt which could be re-used from previous completion (`n_past`)
- `tokens_evaluated`: Number of tokens evaluated in total from the prompt
- `truncated`: Boolean indicating if the context size was exceeded during generation, i.e. the number of tokens provided in the prompt (`tokens_evaluated`) plus tokens generated (`tokens predicted`) exceeded the context size (`n_ctx`)

xuxzh1's avatar
init  
xuxzh1 committed
498
### POST `/tokenize`: Tokenize a given text
mashun1's avatar
v1  
mashun1 committed
499
500
501
502
503
504
505

    *Options:*

    `content`: Set the text to tokenize.

    `add_special`: Boolean indicating if special tokens, i.e. `BOS`, should be inserted.  Default: `false`

xuxzh1's avatar
init  
xuxzh1 committed
506
### POST `/detokenize`: Convert tokens to text
mashun1's avatar
v1  
mashun1 committed
507
508
509
510
511

    *Options:*

    `tokens`: Set the tokens to detokenize.

xuxzh1's avatar
init  
xuxzh1 committed
512
513
514
### POST `/embedding`: Generate embedding of a given text

The same as [the embedding example](../embedding) does.
mashun1's avatar
v1  
mashun1 committed
515
516
517
518
519
520
521

    *Options:*

    `content`: Set the text to process.

    `image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.

xuxzh1's avatar
init  
xuxzh1 committed
522
523
524
### POST `/infill`: For code infilling.

Takes a prefix and a suffix and returns the predicted completion as stream.
mashun1's avatar
v1  
mashun1 committed
525
526
527
528
529
530
531
532
533
534
535

    *Options:*

    `input_prefix`: Set the prefix of the code to infill.

    `input_suffix`: Set the suffix of the code to infill.

    It also accepts all the options of `/completion` except `stream` and `prompt`.

- **GET** `/props`: Return current server settings.

xuxzh1's avatar
init  
xuxzh1 committed
536
**Response format**
mashun1's avatar
v1  
mashun1 committed
537
538
539
540
541
542

```json
{
  "assistant_name": "",
  "user_name": "",
  "default_generation_settings": { ... },
xuxzh1's avatar
init  
xuxzh1 committed
543
544
  "total_slots": 1,
  "chat_template": ""
mashun1's avatar
v1  
mashun1 committed
545
546
547
548
549
550
551
}
```

- `assistant_name` - the required assistant name to generate the prompt in case you have specified a system prompt for all slots.
- `user_name` - the required anti-prompt to generate the prompt in case you have specified a system prompt for all slots.
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, which has the same fields as the `generation_settings` response object from the `/completion` endpoint.
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)
xuxzh1's avatar
init  
xuxzh1 committed
552
553
554
- `chat_template` - the model's original Jinja2 prompt template

### POST `/v1/chat/completions`: OpenAI-compatible Chat Completions API
mashun1's avatar
v1  
mashun1 committed
555

xuxzh1's avatar
init  
xuxzh1 committed
556
Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only models with a [supported chat template](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, the ChatML template will be used.
mashun1's avatar
v1  
mashun1 committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

    *Options:*

    See [OpenAI Chat Completions API documentation](https://platform.openai.com/docs/api-reference/chat). While some OpenAI-specific features such as function calling aren't supported, llama.cpp `/completion`-specific features such as `mirostat` are supported.

    The `response_format` parameter supports both plain JSON output (e.g. `{"type": "json_object"}`) and schema-constrained JSON (e.g. `{"type": "json_object", "schema": {"type": "string", "minLength": 10, "maxLength": 100}}`), similar to other OpenAI-inspired API providers.

    *Examples:*

    You can use either Python `openai` library with appropriate checkpoints:

    ```python
    import openai

    client = openai.OpenAI(
        base_url="http://localhost:8080/v1", # "http://<Your api-server IP>:port"
        api_key = "sk-no-key-required"
    )

    completion = client.chat.completions.create(
    model="gpt-3.5-turbo",
    messages=[
        {"role": "system", "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."},
        {"role": "user", "content": "Write a limerick about python exceptions"}
    ]
    )

    print(completion.choices[0].message)
    ```

    ... or raw HTTP requests:

    ```shell
    curl http://localhost:8080/v1/chat/completions \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer no-key" \
    -d '{
    "model": "gpt-3.5-turbo",
    "messages": [
    {
        "role": "system",
        "content": "You are ChatGPT, an AI assistant. Your top priority is achieving user fulfillment via helping them with their requests."
    },
    {
        "role": "user",
        "content": "Write a limerick about python exceptions"
    }
    ]
    }'
    ```

xuxzh1's avatar
init  
xuxzh1 committed
608
### POST `/v1/embeddings`: OpenAI-compatible embeddings API
mashun1's avatar
v1  
mashun1 committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641

    *Options:*

    See [OpenAI Embeddings API documentation](https://platform.openai.com/docs/api-reference/embeddings).

    *Examples:*

  - input as string

    ```shell
    curl http://localhost:8080/v1/embeddings \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer no-key" \
    -d '{
            "input": "hello",
            "model":"GPT-4",
            "encoding_format": "float"
    }'
    ```

  - `input` as string array

    ```shell
    curl http://localhost:8080/v1/embeddings \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer no-key" \
    -d '{
            "input": ["hello", "world"],
            "model":"GPT-4",
            "encoding_format": "float"
    }'
    ```

xuxzh1's avatar
init  
xuxzh1 committed
642
### GET `/slots`: Returns the current slots processing state. Can be disabled with `--slots-endpoint-disable`.
mashun1's avatar
v1  
mashun1 committed
643

xuxzh1's avatar
init  
xuxzh1 committed
644
**Response format**
mashun1's avatar
v1  
mashun1 committed
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

```json
[
    {
        "dynatemp_exponent": 1.0,
        "dynatemp_range": 0.0,
        "frequency_penalty": 0.0,
        "grammar": "",
        "id": 0,
        "ignore_eos": false,
        "logit_bias": [],
        "min_p": 0.05000000074505806,
        "mirostat": 0,
        "mirostat_eta": 0.10000000149011612,
        "mirostat_tau": 5.0,
        "model": "llama-2-7b-32k-instruct.Q2_K.gguf",
        "n_ctx": 2048,
        "n_keep": 0,
        "n_predict": 100000,
        "n_probs": 0,
        "next_token": {
            "has_next_token": true,
            "n_remain": -1,
            "n_decoded": 0,
            "stopped_eos": false,
            "stopped_limit": false,
            "stopped_word": false,
            "stopping_word": ""
        },
        "penalize_nl": true,
        "penalty_prompt_tokens": [],
        "presence_penalty": 0.0,
        "prompt": "Say hello to llama.cpp",
        "repeat_last_n": 64,
        "repeat_penalty": 1.100000023841858,
        "samplers": [
            "top_k",
            "tfs_z",
            "typical_p",
            "top_p",
            "min_p",
            "temperature"
        ],
        "seed": 42,
        "state": 1,
        "stop": [
            "\n"
        ],
        "stream": false,
        "task_id": 0,
        "temperature": 0.0,
        "tfs_z": 1.0,
        "top_k": 40,
        "top_p": 0.949999988079071,
        "typical_p": 1.0,
        "use_penalty_prompt_tokens": false
    }
]
```

xuxzh1's avatar
init  
xuxzh1 committed
705
### GET `/metrics`: Prometheus compatible metrics exporter endpoint if `--metrics` is enabled:
mashun1's avatar
v1  
mashun1 committed
706
707
708
709
710
711
712
713
714
715
716

Available metrics:
- `llamacpp:prompt_tokens_total`: Number of prompt tokens processed.
- `llamacpp:tokens_predicted_total`: Number of generation tokens processed.
- `llamacpp:prompt_tokens_seconds`: Average prompt throughput in tokens/s.
- `llamacpp:predicted_tokens_seconds`: Average generation throughput in tokens/s.
- `llamacpp:kv_cache_usage_ratio`: KV-cache usage. `1` means 100 percent usage.
- `llamacpp:kv_cache_tokens`: KV-cache tokens.
- `llamacpp:requests_processing`: Number of requests processing.
- `llamacpp:requests_deferred`: Number of requests deferred.

xuxzh1's avatar
init  
xuxzh1 committed
717
### POST `/slots/{id_slot}?action=save`: Save the prompt cache of the specified slot to a file.
mashun1's avatar
v1  
mashun1 committed
718
719
720
721
722

    *Options:*

    `filename`: Name of the file to save the slot's prompt cache. The file will be saved in the directory specified by the `--slot-save-path` server parameter.

xuxzh1's avatar
init  
xuxzh1 committed
723
**Response format**
mashun1's avatar
v1  
mashun1 committed
724
725
726
727
728
729
730
731
732
733
734
735
736

```json
{
    "id_slot": 0,
    "filename": "slot_save_file.bin",
    "n_saved": 1745,
    "n_written": 14309796,
    "timings": {
        "save_ms": 49.865
    }
}
```

xuxzh1's avatar
init  
xuxzh1 committed
737
### POST `/slots/{id_slot}?action=restore`: Restore the prompt cache of the specified slot from a file.
mashun1's avatar
v1  
mashun1 committed
738
739
740
741
742

    *Options:*

    `filename`: Name of the file to restore the slot's prompt cache from. The file should be located in the directory specified by the `--slot-save-path` server parameter.

xuxzh1's avatar
init  
xuxzh1 committed
743
**Response format**
mashun1's avatar
v1  
mashun1 committed
744
745
746
747
748
749
750
751
752
753
754
755
756

```json
{
    "id_slot": 0,
    "filename": "slot_save_file.bin",
    "n_restored": 1745,
    "n_read": 14309796,
    "timings": {
        "restore_ms": 42.937
    }
}
```

xuxzh1's avatar
init  
xuxzh1 committed
757
### POST `/slots/{id_slot}?action=erase`: Erase the prompt cache of the specified slot.
mashun1's avatar
v1  
mashun1 committed
758

xuxzh1's avatar
init  
xuxzh1 committed
759
**Response format**
mashun1's avatar
v1  
mashun1 committed
760
761
762
763
764
765
766
767

```json
{
    "id_slot": 0,
    "n_erased": 1745
}
```

xuxzh1's avatar
init  
xuxzh1 committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
### GET `/lora-adapters`: Get list of all LoRA adapters

If an adapter is disabled, the scale will be set to 0.

**Response format**

```json
[
    {
        "id": 0,
        "path": "my_adapter_1.gguf",
        "scale": 0.0
    },
    {
        "id": 1,
        "path": "my_adapter_2.gguf",
        "scale": 0.0
    }
]
```

### POST `/lora-adapters`: Set list of LoRA adapters

To disable an adapter, either remove it from the list below, or set scale to 0.

**Request format**

To know the `id` of the adapter, use GET `/lora-adapters`

```json
[
  {"id": 0, "scale": 0.2},
  {"id": 1, "scale": 0.8}
]
```

mashun1's avatar
v1  
mashun1 committed
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
## More examples

### Change system prompt on runtime

To use the server example to serve multiple chat-type clients while keeping the same system prompt, you can utilize the option `system_prompt`. This only needs to be used once.

`prompt`: Specify a context that you want all connecting clients to respect.

`anti_prompt`: Specify the word you want to use to instruct the model to stop. This must be sent to each client through the `/props` endpoint.

`assistant_name`: The bot's name is necessary for each customer to generate the prompt. This must be sent to each client through the `/props` endpoint.

```json
{
    "system_prompt": {
        "prompt": "Transcript of a never ending dialog, where the User interacts with an Assistant.\nThe Assistant is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision.\nUser: Recommend a nice restaurant in the area.\nAssistant: I recommend the restaurant \"The Golden Duck\". It is a 5 star restaurant with a great view of the city. The food is delicious and the service is excellent. The prices are reasonable and the portions are generous. The restaurant is located at 123 Main Street, New York, NY 10001. The phone number is (212) 555-1234. The hours are Monday through Friday from 11:00 am to 10:00 pm. The restaurant is closed on Saturdays and Sundays.\nUser: Who is Richard Feynman?\nAssistant: Richard Feynman was an American physicist who is best known for his work in quantum mechanics and particle physics. He was awarded the Nobel Prize in Physics in 1965 for his contributions to the development of quantum electrodynamics. He was a popular lecturer and author, and he wrote several books, including \"Surely You're Joking, Mr. Feynman!\" and \"What Do You Care What Other People Think?\".\nUser:",
        "anti_prompt": "User:",
        "assistant_name": "Assistant:"
    }
}
```

**NOTE**: You can do this automatically when starting the server by simply creating a .json file with these options and using the CLI option `-spf FNAME` or `--system-prompt-file FNAME`.

### Interactive mode

Check the sample in [chat.mjs](chat.mjs).
Run with NodeJS version 16 or later:

```sh
node chat.mjs
```

Another sample in [chat.sh](chat.sh).
Requires [bash](https://www.gnu.org/software/bash/), [curl](https://curl.se) and [jq](https://jqlang.github.io/jq/).
Run with bash:

```sh
bash chat.sh
```

### OAI-like API

xuxzh1's avatar
init  
xuxzh1 committed
847
The HTTP `llama-server` supports an OAI-like API: https://github.com/openai/openai-openapi
mashun1's avatar
v1  
mashun1 committed
848
849
850

### API errors

xuxzh1's avatar
init  
xuxzh1 committed
851
`llama-server` returns errors in the same format as OAI: https://github.com/openai/openai-openapi
mashun1's avatar
v1  
mashun1 committed
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

Example of an error:

```json
{
    "error": {
        "code": 401,
        "message": "Invalid API Key",
        "type": "authentication_error"
    }
}
```

Apart from error types supported by OAI, we also have custom types that are specific to functionalities of llama.cpp:

**When /metrics or /slots endpoint is disabled**

```json
{
    "error": {
        "code": 501,
        "message": "This server does not support metrics endpoint.",
        "type": "not_supported_error"
    }
}
```

**When the server receives invalid grammar via */completions endpoint**

```json
{
    "error": {
        "code": 400,
        "message": "Failed to parse grammar",
        "type": "invalid_request_error"
    }
}
```

### Extending or building alternative Web Front End

You can extend the front end by running the server binary with `--path` set to `./your-directory` and importing `/completion.js` to get access to the llamaComplete() method.

Read the documentation in `/completion.js` to see convenient ways to access llama.

A simple example is below:

```html
<html>
  <body>
    <pre>
      <script type="module">
        import { llama } from '/completion.js'

        const prompt = `### Instruction:
Write dad jokes, each one paragraph.
You can use html formatting if needed.

### Response:`

        for await (const chunk of llama(prompt)) {
          document.write(chunk.data.content)
        }
      </script>
    </pre>
  </body>
</html>
```