lookup-stats.cpp 5.6 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include "ggml.h"
#include "common.h"
#include "llama.h"
#include "log.h"
#include "ngram-cache.h"

#include <cmath>
#include <cstdint>
#include <cstdio>
#include <fstream>
#include <string>
#include <vector>
#include <unordered_map>

int main(int argc, char ** argv){
    gpt_params params;

    if (!gpt_params_parse(argc, argv, params)) {
xuxzh1's avatar
init  
xuxzh1 committed
19
        gpt_params_print_usage(argc, argv, params);
mashun1's avatar
v1  
mashun1 committed
20
21
22
23
24
25
26
27
28
29
        return 1;
    }

    const int n_draft = params.n_draft;

    // init llama.cpp
    llama_backend_init();
    llama_numa_init(params.numa);

    // load the model
xuxzh1's avatar
init  
xuxzh1 committed
30
31
32
33
    llama_init_result llama_init = llama_init_from_gpt_params(params);

    llama_model * model = llama_init.model;
    llama_context * ctx = llama_init.context;
mashun1's avatar
v1  
mashun1 committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

    // tokenize the prompt
    std::vector<llama_token> inp;
    inp = ::llama_tokenize(ctx, params.prompt, true, true);

    llama_ngram_cache ngram_cache_context;
    llama_ngram_cache ngram_cache_dynamic;
    llama_ngram_cache ngram_cache_static;
    int64_t t_draft_flat_us = 0;
    int64_t t_draft_us = 0;

    {
        const int64_t t_start_draft_us = ggml_time_us();

        if (!params.lookup_cache_static.empty()) {
            try {
                ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
            } catch (std::ifstream::failure const &) {
                fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
                exit(1);
            }
        }

        if (!params.lookup_cache_dynamic.empty()) {
            try {
                ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
            } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
        }

        t_draft_flat_us += ggml_time_us() - t_start_draft_us;
    }

    const int n_input = inp.size();
xuxzh1's avatar
init  
xuxzh1 committed
67
    const int n_ctx = llama_n_ctx(ctx);
mashun1's avatar
v1  
mashun1 committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

    int n_drafted = 0;
    int n_accept  = 0;

    const int64_t t_start_ms = ggml_time_ms();

    // Iterate over input tokens in chunks of size n_ctx.
    // Each chunk is treated as if a sequential generation but with pre-determined tokens to ensure reproducibility.
    for (int i_start = 0; i_start + n_ctx < n_input; i_start += n_ctx) {
        const std::vector<llama_token> inp_slice(inp.begin() + i_start, inp.begin() + i_start + n_ctx);
        std::vector<llama_token> pseudo_output;
        pseudo_output.push_back(inp_slice[0]);

        while ((int) pseudo_output.size() < n_ctx) {
            // Simulate drafting and decoding from draft:
            std::vector<llama_token> draft;
            draft.push_back(pseudo_output.back());

            {
                const int64_t t_start_draft_us = ggml_time_us();
                llama_ngram_cache_draft(pseudo_output, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
                t_draft_us += ggml_time_us() - t_start_draft_us;
            }

            n_drafted += draft.size() - 1;

            for (size_t j = 1; j < draft.size() && (int) pseudo_output.size() < n_ctx; ++j) {
                const llama_token ground_truth = inp_slice[pseudo_output.size()];
                const llama_token drafted = draft[j];

                if (ground_truth != drafted) {
                    break;
                }

                ++n_accept;
                pseudo_output.push_back(ground_truth);

                {
                    const int64_t t_start_draft_us = ggml_time_us();
                    llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
                    t_draft_us += ggml_time_us() - t_start_draft_us;
                }
            }

            // After each simulated batch decoding simulate the sampling of a single token:
            if ((int) pseudo_output.size() < n_ctx) {
                pseudo_output.push_back(inp_slice[pseudo_output.size()]);
                {
                    const int64_t t_start_draft_us = ggml_time_us();
                    llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, pseudo_output, 1, false);
                    t_draft_us += ggml_time_us() - t_start_draft_us;
                }
            }

            draft.erase(draft.begin());

        }
        if (i_start > 0 && i_start / 100000 != (i_start - n_ctx) / 100000) {
            const int64_t t_now_ms = ggml_time_ms();
            const int64_t eta_ms   = (n_input - i_start) * (t_now_ms - t_start_ms) / i_start;
            const int64_t eta_min  = eta_ms / (60*1000);
            const int64_t eta_s    = (eta_ms - 60*1000*eta_min) / 1000;

            LOG_TEE("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s);
        }

        // After each chunk, update the dynamic ngram cache with the context ngram cache:
        llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
        ngram_cache_context.clear();
    }

    LOG_TEE("\n");

    LOG_TEE("\n");
    LOG_TEE("n_draft      = %d\n", n_draft);
    LOG_TEE("n_predict    = %d\n", n_input - n_input % n_ctx);
    LOG_TEE("n_drafted    = %d\n", n_drafted);
    LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
    LOG_TEE("t_draft      = %.2f ms, %.2f us per token, %.2f tokens per second\n",
            t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
    LOG_TEE("n_accept     = %d\n", n_accept);
    LOG_TEE("accept       = %.3f%%\n", 100.0f * n_accept / n_drafted);

    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

    fprintf(stderr, "\n\n");

    return 0;
}