model_text.go 5.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
package mistral3

import (
	"fmt"
	"math"
	"strings"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type TextOptions struct {
	hiddenSize, numHeads, numKVHeads, headDim int
	eps, ropeBase, ropeScale                  float32
	ropeDim                                   uint32
}

type TextModel struct {
	model.Base
	model.BytePairEncoding

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	*TextOptions
}

type SelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
	batchSize := hiddenState.Dim(1)
	ropeType := uint32(0)
	headDim := opts.headDim
	if headDim == 0 {
		headDim = opts.hiddenSize / opts.numHeads
	}

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
	q = q.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
	k = k.RoPE(ctx, positionIDs, nil, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

	kqv := nn.Attention(ctx, q, k, v, 1.0/math.Sqrt(float64(headDim)), cache)
	kqv = kqv.Reshape(ctx, headDim*opts.numHeads, batchSize)
	return sa.Output.Forward(ctx, kqv)
}

func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	return key.RoPE(ctx, shift, nil, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
}

type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention *SelfAttention
	MLPNorm       *nn.RMSNorm `gguf:"ffn_norm"`
	MLP           *MLP
}

func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	return hiddenState.Add(ctx, residual)
}

func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
	hiddenState := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx)

	// image embeddings
	for _, image := range batch.Multimodal {
		row := image.Multimodal.(*imageRow)
		row.parent.dataOnce.Do(func() {
			// use a new, throwaway context so the image tensor is not added to the graph
			temp := m.Backend().NewContext()
			temp.Forward(row.parent.tensor).Compute(row.parent.tensor)
			row.parent.data = row.parent.tensor.Floats()
			temp.Close()
		})

		imageFeature, err := ctx.Input().FromFloatSlice(row.data(), row.shape...)
		if err != nil {
			panic(err)
		}

		ctx.Forward(imageFeature.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), imageFeature.Dim(0)*imageFeature.Dim(1))))
	}

	for i, layer := range m.Layers {
		cache.SetLayer(i)

		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}

		hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
	}

	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	return m.Output.Forward(ctx, hiddenState)
}

func NewTextModel(c fs.Config) (*TextModel, error) {
	if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
		return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
	}

	textModel := &TextModel{
		BytePairEncoding: model.NewBytePairEncoding(
			c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Uints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
				BOS:    int32(c.Uint("tokenizer.ggml.bos_token_id", 1)),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
				EOS:    int32(c.Uint("tokenizer.ggml.eos_token_id", 2)),
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
			},
		),
		Layers: make([]Layer, c.Uint("block_count")),
		TextOptions: &TextOptions{
			hiddenSize: int(c.Uint("embedding_length")),
			numHeads:   int(c.Uint("attention.head_count")),
			numKVHeads: int(c.Uint("attention.head_count_kv")),
			headDim:    int(c.Uint("attention.key_length")),
			eps:        c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:   c.Float("rope.freq_base"),
			ropeScale:  c.Float("rope.freq_scale", 1),
			ropeDim:    c.Uint("rope.dimension_count"),
		},
	}

	return textModel, nil
}