"README_ORIGIN.md" did not exist on "7c211e8ef1943009d57c6c6ffdc6a6583146cb2b"
import.md 3.91 KB
Newer Older
1
2
# Import a model

Jeffrey Morgan's avatar
Jeffrey Morgan committed
3
This guide walks through importing a PyTorch, Safetensors or GGUF model.
4
5
6
7
8

## Supported models

Ollama supports a set of model architectures, with support for more coming soon:

9
- Llama & Mistral
10
- Falcon & RW
11
- GPT-NeoX
12
13
- BigCode

14
To view a model's architecture, check the `config.json` file in its HuggingFace repo. You should see an entry under `architectures` (e.g. `LlamaForCausalLM`).
15
16
17

## Importing

Jeffrey Morgan's avatar
Jeffrey Morgan committed
18
19
20
### Step 1: Clone the HuggingFace repository (optional)

If the model is currently hosted in a HuggingFace repository, first clone that repository to download the raw model.
21
22
23
24
25
26
27

```
git lfs install
git clone https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
cd Mistral-7B-Instruct-v0.1
```

Jeffrey Morgan's avatar
Jeffrey Morgan committed
28
### Step 2: Convert and quantize to a `.bin` file (optional, for PyTorch and Safetensors)
29

Jeffrey Morgan's avatar
Jeffrey Morgan committed
30
If the model is in PyTorch or Safetensors format, a [Docker image](https://hub.docker.com/r/ollama/quantize) with the tooling required to convert and quantize models is available.
31

32
First, Install [Docker](https://www.docker.com/get-started/).
33

34
Next, to convert and quantize your model, run:
35
36
37
38
39
40
41
42

```
docker run --rm -v .:/model ollama/quantize -q q4_0 /model
```

This will output two files into the directory:

- `f16.bin`: the model converted to GGUF
43
- `q4_0.bin` the model quantized to a 4-bit quantization (we will use this file to create the Ollama model)
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

### Step 3: Write a `Modelfile`

Next, create a `Modelfile` for your model. This file is the blueprint for your model, specifying weights, parameters, prompt templates and more.

```
FROM ./q4_0.bin
```

(Optional) many chat models require a prompt template in order to answer correctly. A default prompt template can be specified with the `TEMPLATE` instruction in the `Modelfile`:

```
FROM ./q4_0.bin
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
```

60
### Step 4: Create the Ollama model
61
62
63
64
65
66
67
68
69
70
71
72
73

Finally, create a model from your `Modelfile`:

```
ollama create example -f Modelfile
```

Next, test the model with `ollama run`:

```
ollama run example "What is your favourite condiment?"
```

74
### Step 5: Publish your model (optional – early alpha)
75
76
77
78

Publishing models is in early alpha. If you'd like to publish your model to share with others, follow these steps:

1. Create [an account](https://ollama.ai/signup)
79
2. Run `cat ~/.ollama/id_ed25519.pub` to view your Ollama public key. Copy this to the clipboard.
80
81
82
83
84
85
86
87
88
89
90
91
92
93
3. Add your public key to your [Ollama account](https://ollama.ai/settings/keys)

Next, copy your model to your username's namespace:

```
ollama cp example <your username>/example
```

Then push the model:

```
ollama push <your username>/example
```

94
After publishing, your model will be available at `https://ollama.ai/<your username>/example`.
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

## Quantization reference

The quantization options are as follow (from highest highest to lowest levels of quantization). Note: some architectures such as Falcon do not support K quants.

- `q2_K`
- `q3_K`
- `q3_K_S`
- `q3_K_M`
- `q3_K_L`
- `q4_0` (recommended)
- `q4_1`
- `q4_K`
- `q4_K_S`
- `q4_K_M`
- `q5_0`
- `q5_1`
- `q5_K`
- `q5_K_S`
- `q5_K_M`
- `q6_K`
- `q8_0`

## Manually converting & quantizing models

### Prerequisites

Start by cloning the `llama.cpp` repo to your machine in another directory:

```
git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp
```

Next, install the Python dependencies:

```
pip install -r requirements.txt
```

Finally, build the `quantize` tool:

```
make quantize
```

### Convert the model

Run the correct conversion script for your model architecture:

```shell
# LlamaForCausalLM or MistralForCausalLM
147
python convert.py <path to model directory>
148
149

# FalconForCausalLM
150
python convert-falcon-hf-to-gguf.py <path to model directory>
151
152

# GPTNeoXForCausalLM
153
python convert-falcon-hf-to-gguf.py <path to model directory>
154
155

# GPTBigCodeForCausalLM
156
python convert-starcoder-hf-to-gguf.py <path to model directory>
157
158
159
160
161
162
163
```

### Quantize the model

```
quantize <path to model dir>/ggml-model-f32.bin <path to model dir>/q4_0.bin q4_0
```