model.go 8.32 KB
Newer Older
1
2
3
4
5
package qwen3

import (
	"cmp"
	"math"
6
	"strings"
7
8
9
10
11
12
13
14
15
16
17

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/ml/nn/rope"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Options struct {
Michael Yang's avatar
Michael Yang committed
18
19
20
21
22
23
24
25
26
27
28
	hiddenSize,
	numHeads,
	numKVHeads,
	keyLength,
	valueLength int

	eps,
	ropeBase,
	ropeScale float32
	ropeType              string
	originalContextLength int
29
30
31
32
33
34
35
36
37

	numExperts, numExpertsUsed int
	normTopKProb               bool
}

func (o Options) headDim() int {
	return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}

Michael Yang's avatar
Michael Yang committed
38
39
40
41
42
43
44
45
46
47
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
	opts := []func(*rope.Options){rope.WithTypeNeoX()}
	if o.ropeType == "yarn" {
		attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(o.ropeScale))))
		opts = append(opts,
			rope.WithOriginalContextLength(o.originalContextLength),
			rope.WithExtrapolationFactor(1.),
			rope.WithAttentionFactor(attnFactor),
		)
	}
Michael Yang's avatar
Michael Yang committed
48
	return nn.RoPE(ctx, states, positions, o.headDim(), o.ropeBase, 1./o.ropeScale, opts...)
Michael Yang's avatar
Michael Yang committed
49
50
}

51
52
type Attention struct {
	Query     *nn.Linear  `gguf:"attn_q"`
53
	QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
54
	Key       *nn.Linear  `gguf:"attn_k"`
55
	KeyNorm   *nn.RMSNorm `gguf:"attn_k_norm"`
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
	Value     *nn.Linear  `gguf:"attn_v"`
	Output    *nn.Linear  `gguf:"attn_output"`
}

func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	batchSize := hiddenStates.Dim(1)

	query := sa.Query.Forward(ctx, hiddenStates)
	key := sa.Key.Forward(ctx, hiddenStates)
	value := sa.Value.Forward(ctx, hiddenStates)

	query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
	key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
	value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)

	query = sa.QueryNorm.Forward(ctx, query, opts.eps)
	key = sa.KeyNorm.Forward(ctx, key, opts.eps)

Michael Yang's avatar
Michael Yang committed
74
75
	query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
	key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
76
77
78
79
80
81
82
83
84
85
86

	attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
	attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
	return sa.Output.Forward(ctx, attention)
}

type MLP interface {
	Forward(ml.Context, ml.Tensor, *Options) ml.Tensor
}

type sparse struct {
87
88
89
90
	Router *nn.Linear      `gguf:"ffn_gate_inp"`
	Gate   *nn.LinearBatch `gguf:"ffn_gate_exps"`
	Up     *nn.LinearBatch `gguf:"ffn_up_exps"`
	Down   *nn.LinearBatch `gguf:"ffn_down_exps"`
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
}

func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
	hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
	hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
	routerLogits := mlp.Router.Forward(ctx, hiddenStates)

	routingWeights := routerLogits.Softmax(ctx)
	selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
	routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, selectedExperts)
	if opts.normTopKProb {
		routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, hiddenStates.Dim(1))
		routingWeights = routingWeights.Div(ctx, routingWeights.SumRows(ctx))
		routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, hiddenStates.Dim(1))
	}

	hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))

109
	hiddenStates = mlp.Gate.Forward(ctx, hiddenStates, selectedExperts).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates, selectedExperts))
110

111
	experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
	experts = experts.Mul(ctx, routingWeights)

	nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
	for i := 1; i < opts.numExpertsUsed; i++ {
		nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
	}

	return nextStates
}

type dense struct {
	Gate *nn.Linear `gguf:"ffn_gate"`
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
}

func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *Options) ml.Tensor {
129
130
	hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).
		SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
	return mlp.Down.Forward(ctx, hiddenStates)
}

type Layer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	*Attention

	MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
	MLP
}

func (d *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	residual := hiddenStates
	hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)

	if outputs != nil {
		hiddenStates = hiddenStates.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

	hiddenStates = hiddenStates.Add(ctx, residual)

	residual = hiddenStates
	hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = d.MLP.Forward(ctx, hiddenStates, opts)
	return hiddenStates.Add(ctx, residual)
}

type Model struct {
	model.Base
	model.BytePairEncoding

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	Layers []Layer `gguf:"blk"`

	*Options
}

func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
Michael Yang's avatar
Michael Yang committed
174
175
176
177
178
179
180
181
182
183
	hiddenStates, err := m.forward(ctx, batch)
	if err != nil {
		return nil, err
	}

	return m.Output.Forward(ctx, hiddenStates), nil
}

// Forward implements model.Model.
func (m *Model) forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
Michael Yang's avatar
Michael Yang committed
184
	positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
185
186
187
188

	hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)

	for i, layer := range m.Layers {
Michael Yang's avatar
Michael Yang committed
189
190
191
		if m.Cache != nil {
			m.Cache.SetLayer(i)
		}
192
193
194

		var outputs ml.Tensor
		if i == len(m.Layers)-1 {
195
			outputs = batch.Outputs
196
197
198
199
200
		}

		hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
	}

Michael Yang's avatar
Michael Yang committed
201
	return m.OutputNorm.Forward(ctx, hiddenStates, m.eps), nil
202
203
204
}

func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
Michael Yang's avatar
Michael Yang committed
205
	return m.Options.applyRotaryPositionEmbeddings(ctx, key, shift), nil
206
207
208
209
210
211
212
}

var _ model.Model = (*Model)(nil)

func New(c fs.Config) (model.Model, error) {
	layers := make([]Layer, c.Uint("block_count"))
	for i := range layers {
213
		if strings.HasSuffix(c.String("general.architecture"), "moe") {
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
			layers[i].MLP = &sparse{}
		} else {
			layers[i].MLP = &dense{}
		}
	}

	m := Model{
		BytePairEncoding: model.NewBytePairEncoding(
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Ints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
				BOS:    []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
				EOS: append(
					[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
					c.Ints("tokenizer.ggml.eos_token_ids")...,
				),
			},
234
			`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
235
236
237
		),
		Layers: layers,
		Options: &Options{
Michael Yang's avatar
Michael Yang committed
238
239
240
241
242
243
244
245
246
247
248
249
250
			hiddenSize:            int(c.Uint("embedding_length")),
			numHeads:              int(c.Uint("attention.head_count")),
			numKVHeads:            int(c.Uint("attention.head_count_kv")),
			keyLength:             int(c.Uint("attention.key_length")),
			valueLength:           int(c.Uint("attention.value_length")),
			eps:                   c.Float("attention.layer_norm_rms_epsilon"),
			ropeType:              c.String("rope.scaling.type"),
			ropeBase:              c.Float("rope.freq_base"),
			ropeScale:             c.Float("rope.scaling.factor", 1),
			originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
			numExperts:            int(c.Uint("expert_count")),
			numExpertsUsed:        int(c.Uint("expert_used_count")),
			normTopKProb:          c.Bool("norm_top_k_prob", true),
251
252
253
254
255
256
257
258
259
260
		},
	}

	m.Cache = kvcache.NewCausalCache(m.Shift)
	return &m, nil
}

func init() {
	model.Register("qwen3", New)
	model.Register("qwen3moe", New)
Michael Yang's avatar
Michael Yang committed
261
	model.Register("qwen3_embed", newEmbed)
262
}