model.go 4.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
package nomicbert

import (
	"cmp"
	"math"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/ml/nn/pooling"
	"github.com/ollama/ollama/ml/nn/rope"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Model struct {
	model.Base
	model.TextProcessor

	TokenEmbedding     *nn.Embedding `gguf:"token_embd"`
	TypeEmbedding      *nn.Embedding `gguf:"token_types"`
	TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"`

	Layers []EncoderLayer `gguf:"blk"`

	Options
}

type Options struct {
	hiddenSize   int
	numHeads     int
	headDim      int
	eps          float32
	poolingType  pooling.Type
	normalize    bool
	ropeFreqBase float32
}

Michael Yang's avatar
Michael Yang committed
39
40
41
42
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
	return nn.RoPE(ctx, states, positions, o.headDim, o.ropeFreqBase, 1.0, rope.WithTypeNeoX())
}

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
// Single Encoder Layer
type EncoderLayer struct {
	*Attention

	AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"`

	*MLP

	MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"`
}

type Attention struct {
	QKV    *nn.Linear `gguf:"attn_qkv"`
	Output *nn.Linear `gguf:"attn_output"`
}

type MLP struct {
	Gate *nn.Linear `gguf:"ffn_gate"`
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
}

func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
	hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)

	typeEmbed := m.TypeEmbedding.Weight.Slice(ctx, 1, 0, 1, 1)
	hiddenStates = hiddenStates.Add(ctx, typeEmbed)

	hiddenStates = m.TokenEmbeddingNorm.Forward(ctx, hiddenStates, m.eps)

	positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))

	for _, layer := range m.Layers {
		hiddenStates = layer.Forward(ctx, hiddenStates, positions, &m.Options)
	}

	hiddenStates = m.poolingType.Forward(ctx, hiddenStates)

	if m.normalize {
		hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
	}

	return hiddenStates, nil
}

func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, positions ml.Tensor, opts *Options) ml.Tensor {
	residual := hiddenStates
	hiddenStates = e.Attention.Forward(ctx, hiddenStates, positions, opts)
	hiddenStates = hiddenStates.Add(ctx, residual)
	hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)

	residual = hiddenStates
	hiddenStates = e.MLP.Forward(ctx, hiddenStates)
	hiddenStates = hiddenStates.Add(ctx, residual)
	hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps)

	return hiddenStates
}

func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, positions ml.Tensor, opts *Options) ml.Tensor {
	batchSize := hiddenStates.Dim(1)

	qkv := a.QKV.Forward(ctx, hiddenStates)

	qkv = qkv.Reshape(ctx, opts.headDim, opts.numHeads*3, batchSize)
	chunks := qkv.Chunk(ctx, 1, opts.numHeads)
	query, key, value := chunks[0], chunks[1], chunks[2]

Michael Yang's avatar
Michael Yang committed
111
112
	query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
	key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

	attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(opts.headDim)), nil)

	attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)

	return a.Output.Forward(ctx, attention)
}

func (m *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
	hidden := m.Gate.Forward(ctx, hiddenStates).SILU(ctx, m.Up.Forward(ctx, hiddenStates))

	return m.Down.Forward(ctx, hidden)
}

func New(c fs.Config) (model.Model, error) {
	hiddenSize := int(c.Uint("embedding_length"))
	numHeads := int(c.Uint("attention.head_count"))
	headDim := hiddenSize / numHeads

	processor := model.NewWordPiece(
		&model.Vocabulary{
			Values: c.Strings("tokenizer.ggml.tokens"),
			Scores: c.Floats("tokenizer.ggml.scores"),
			Types:  c.Ints("tokenizer.ggml.token_type"),
			AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
			BOS: []int32{
				int32(cmp.Or(
					c.Uint("tokenizer.ggml.cls_token_id"),
					c.Uint("tokenizer.ggml.bos_token_id"),
				)),
			},
			AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
			EOS: []int32{
				int32(cmp.Or(
					c.Uint("tokenizer.ggml.separator_token_id"),
					c.Uint("tokenizer.ggml.eos_token_id"),
				)),
			},
		},
		false,
	)

	return &Model{
		TextProcessor: processor,
		Layers:        make([]EncoderLayer, c.Uint("block_count")),
		Options: Options{
			hiddenSize:   hiddenSize,
			numHeads:     numHeads,
			headDim:      headDim,
			eps:          c.Float("attention.layer_norm_epsilon"),
			poolingType:  pooling.Type(c.Uint("pooling_type")),
			normalize:    c.Bool("normalize_embeddings", false),
			ropeFreqBase: c.Float("rope.freq_base", 1000.0),
		},
	}, nil
}

func init() {
	model.Register("nomic-bert", New)
	model.Register("nomic-bert_embed", New)
}