model.go 8.27 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package gptoss

import (
	"cmp"
	"math"
	"strings"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/ml/nn/rope"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Transformer struct {
	model.Base
	model.BytePairEncoding

	TokenEmbedding    *nn.Embedding      `gguf:"token_embd"`
	TransformerBlocks []TransformerBlock `gguf:"blk"`
	OutputNorm        *nn.RMSNorm        `gguf:"output_norm"`
	Output            *nn.Linear         `gguf:"output,alt:token_embd"`

	Options
}

// Forward implements model.Model.
func (m *Transformer) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
	hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
Michael Yang's avatar
Michael Yang committed
32
	positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
Michael Yang's avatar
Michael Yang committed
33
34
35
36
37
38
39
40
41

	for i, block := range m.TransformerBlocks {
		m.Cache.SetLayer(i)
		if c, ok := m.Cache.(*kvcache.WrapperCache); ok {
			// Even layers are sliding window attention.
			c.SetLayerType(i % 2)
		}

		var outputs ml.Tensor
42
43
		if i == len(m.TransformerBlocks)-1 {
			outputs = batch.Outputs
Michael Yang's avatar
Michael Yang committed
44
45
		}

46
		hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)
Michael Yang's avatar
Michael Yang committed
47
48
49
50
51
52
53
	}

	hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
	return m.Output.Forward(ctx, hiddenStates), nil
}

func (m *Transformer) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
Michael Yang's avatar
Michael Yang committed
54
	return m.applyRotaryPositionEmbeddings(ctx, key, shift), nil
Michael Yang's avatar
Michael Yang committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
}

type Options struct {
	hiddenSize,
	numHeads,
	numKVHeads,
	keyLength,
	valueLength,
	numExperts,
	numExpertsUsed,
	originalContextLength int

	eps,
	ropeBase,
	ropeScale float32
}

Michael Yang's avatar
Michael Yang committed
72
73
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
	return nn.RoPE(ctx, states, positions, o.headDim(), o.ropeBase, 1./o.ropeScale,
Michael Yang's avatar
Michael Yang committed
74
75
76
		rope.WithTypeNeoX(),
		rope.WithOriginalContextLength(o.originalContextLength),
		rope.WithExtrapolationFactor(1.),
Michael Yang's avatar
Michael Yang committed
77
78
79
	// NOTE: ggml sets this implicitly so there's no need to set it here
	// rope.WithAttentionFactor(0.1*float32(math.Log(float64(o.ropeScale))) + 1.0),
	)
Michael Yang's avatar
Michael Yang committed
80
81
82
83
84
85
86
87
88
89
90
}

func (o Options) headDim() int {
	return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}

type TransformerBlock struct {
	Attention *AttentionBlock
	MLP       *MLPBlock
}

91
func (d *TransformerBlock) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
92
93
94
95
96
	hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
	if outputs != nil {
		hiddenStates = hiddenStates.Rows(ctx, outputs)
	}

97
	hiddenStates = d.MLP.Forward(ctx, hiddenStates, opts)
Michael Yang's avatar
Michael Yang committed
98
99
100
101
	return hiddenStates
}

type AttentionBlock struct {
102
103
104
105
106
107
108
109
110
111
	Norm *nn.RMSNorm `gguf:"attn_norm"`

	QKV *nn.Linear `gguf:"attn_qkv"`

	Query *nn.Linear `gguf:"attn_q"`
	Key   *nn.Linear `gguf:"attn_k"`
	Value *nn.Linear `gguf:"attn_v"`

	Output *nn.Linear `gguf:"attn_out,alt:attn_output"`
	Sinks  ml.Tensor  `gguf:"attn_sinks,alt:attn_sinks.weight"`
Michael Yang's avatar
Michael Yang committed
112
113
114
115
116
117
118
119
}

func (attn *AttentionBlock) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	batchSize := hiddenStates.Dim(1)

	residual := hiddenStates
	hiddenStates = attn.Norm.Forward(ctx, hiddenStates, opts.eps)

120
121
122
	var query, key, value ml.Tensor
	if attn.QKV != nil {
		qkv := attn.QKV.Forward(ctx, hiddenStates)
123
124
125
		qkv = qkv.Reshape(ctx, opts.headDim(), -1, batchSize)
		chunks := qkv.ChunkSections(ctx, 1, opts.numHeads, opts.numKVHeads, opts.numKVHeads)
		query, key, value = chunks[0], chunks[1], chunks[2]
126
127
128
129
130
131
132
133
134
135
	} else {
		query = attn.Query.Forward(ctx, hiddenStates)
		query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)

		key = attn.Key.Forward(ctx, hiddenStates)
		key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)

		value = attn.Value.Forward(ctx, hiddenStates)
		value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
	}
Michael Yang's avatar
Michael Yang committed
136

Michael Yang's avatar
Michael Yang committed
137
138
	query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
	key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
Michael Yang's avatar
Michael Yang committed
139

140
	attention := nn.AttentionWithSinks(ctx, query, key, value, attn.Sinks, 1/math.Sqrt(float64(opts.headDim())), cache)
Michael Yang's avatar
Michael Yang committed
141
142
143
144
145
	attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
	return attn.Output.Forward(ctx, attention).Add(ctx, residual)
}

type MLPBlock struct {
146
147
148
	Norm   *nn.RMSNorm `gguf:"ffn_norm,alt:post_attention_norm"`
	Router *nn.Linear  `gguf:"ffn_gate_inp"`

Michael Yang's avatar
Michael Yang committed
149
	GateUp *nn.LinearBatch `gguf:"ffn_gate_up_exps"`
150
151
152
153
154

	Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
	Up   *nn.LinearBatch `gguf:"ffn_up_exps"`

	Down *nn.LinearBatch `gguf:"ffn_down_exps"`
Michael Yang's avatar
Michael Yang committed
155
156
}

157
func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
	hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)

	residual := hiddenStates
	hiddenStates = mlp.Norm.Forward(ctx, hiddenStates, opts.eps)

	hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
	routingWeights := mlp.Router.Forward(ctx, hiddenStates)

	selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
	routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, sequenceLength*batchSize).Rows(ctx, selectedExperts)
	routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, sequenceLength*batchSize).Softmax(ctx)
	routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, sequenceLength*batchSize)

	hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))

173
174
175
	var gate, up ml.Tensor
	if mlp.GateUp != nil {
		hiddenStates = mlp.GateUp.Forward(ctx, hiddenStates, selectedExperts)
176
177
		gate = hiddenStates.Slice(ctx, 0, 0, hiddenStates.Dim(0), 2)
		up = hiddenStates.Slice(ctx, 0, 1, hiddenStates.Dim(0), 2)
178
179
180
181
	} else {
		gate = mlp.Gate.Forward(ctx, hiddenStates, selectedExperts)
		up = mlp.Up.Forward(ctx, hiddenStates, selectedExperts)
	}
Michael Yang's avatar
Michael Yang committed
182

183
	hiddenStates = gate.SILUAlphaLimit(ctx, up, 1.702, 7)
Michael Yang's avatar
Michael Yang committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

	experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
	experts = experts.Mul(ctx, routingWeights)

	nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
	for i := 1; i < opts.numExpertsUsed; i++ {
		nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
	}

	return nextStates.Add(ctx, residual)
}

func New(c fs.Config) (model.Model, error) {
	m := Transformer{
		TransformerBlocks: make([]TransformerBlock, c.Uint("block_count")),
		BytePairEncoding: model.NewBytePairEncoding(
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Ints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
				BOS:    []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
				EOS: append(
					[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
					c.Ints("tokenizer.ggml.eos_token_ids")...,
				),
			},
212
213
214
215
216
217
218
219
220
			strings.Join([]string{
				`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
				`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
				`\p{N}{1,3}`,
				` ?[^\s\p{L}\p{N}]+[\r\n/]*`,
				`\s*[\r\n]+`,
				`\s+(?!\S)`,
				`\s+`,
			}, "|"),
Michael Yang's avatar
Michael Yang committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
		),
		Options: Options{
			hiddenSize:            int(c.Uint("embedding_length")),
			numHeads:              int(c.Uint("attention.head_count")),
			numKVHeads:            int(c.Uint("attention.head_count_kv")),
			keyLength:             int(c.Uint("attention.key_length")),
			valueLength:           int(c.Uint("attention.value_length")),
			numExperts:            int(c.Uint("expert_count")),
			numExpertsUsed:        int(c.Uint("expert_used_count")),
			eps:                   c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:              c.Float("rope.freq_base"),
			ropeScale:             c.Float("rope.scaling.factor", 1.),
			originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
		},
	}

	m.Cache = kvcache.NewWrapperCache(
		kvcache.NewSWAMemCache(int32(c.Uint("attention.sliding_window")), 4096, m.Shift),
		kvcache.NewCausalCache(m.Shift),
	)
	return &m, nil
}

func init() {
	model.Register("gptoss", New)
246
	model.Register("gpt-oss", New)
Michael Yang's avatar
Michael Yang committed
247
}