model_text.go 4.41 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
package deepseekocr

import (
	"math"

	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/ml/nn/rope"
)

type textModel struct {
	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Blocks         []textBlock   `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output"`

	Options textOptions
}

func (m *textModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
Michael Yang's avatar
Michael Yang committed
22
	return m.Options.applyRotaryPositionEmbeddings(ctx, key, shift), nil
Michael Yang's avatar
Michael Yang committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
}

type textOptions struct {
	hiddenSize,
	numHeads,
	numKVHeads,
	numExperts,
	numExpertsUsed int
	ropeBase,
	ropeScale,
	eps float32
}

func (o textOptions) headDim() int {
	return o.hiddenSize / o.numHeads
}

Michael Yang's avatar
Michael Yang committed
40
41
func (o textOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
	return nn.RoPE(ctx, states, positions, o.headDim(), o.ropeBase, 1/o.ropeScale, rope.WithTypeNeoX())
Michael Yang's avatar
Michael Yang committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
}

type textBlock struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	Attention     *textAttention
	MLPNNorm      *nn.RMSNorm `gguf:"ffn_norm"`
	FeedForward   textFeedForward
}

func (m *textBlock) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts textOptions) ml.Tensor {
	residual := hiddenStates
	hiddenStates = m.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = m.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
	if outputs != nil {
		hiddenStates = hiddenStates.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

	hiddenStates = hiddenStates.Add(ctx, residual)

	residual = hiddenStates
	hiddenStates = m.MLPNNorm.Forward(ctx, hiddenStates, opts.eps)
	hiddenStates = m.FeedForward.Forward(ctx, hiddenStates, opts)
	return hiddenStates.Add(ctx, residual)
}

type textAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

func (m *textAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts textOptions) ml.Tensor {
	query := m.Query.Forward(ctx, hiddenStates)
	query = query.Reshape(ctx, opts.headDim(), opts.numHeads, -1)

	key := m.Key.Forward(ctx, hiddenStates)
	key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, -1)

	value := m.Value.Forward(ctx, hiddenStates)
	value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, -1)

Michael Yang's avatar
Michael Yang committed
85
86
	query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
	key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
Michael Yang's avatar
Michael Yang committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

	attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
	attention = attention.Reshape(ctx, -1, attention.Dim(2))
	return m.Output.Forward(ctx, attention)
}

type textFeedForward interface {
	Forward(ml.Context, ml.Tensor, textOptions) ml.Tensor
}

type textMoe struct {
	Router        *nn.Linear      `gguf:"ffn_gate_inp"`
	Gate          *nn.LinearBatch `gguf:"ffn_gate_exps"`
	Up            *nn.LinearBatch `gguf:"ffn_up_exps"`
	Down          *nn.LinearBatch `gguf:"ffn_down_exps"`
	SharedExperts *textMLP        `gguf:",suf:_shexp"`
}

func (m *textMoe) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts textOptions) ml.Tensor {
	scores := m.Router.Forward(ctx, hiddenStates).Softmax(ctx)
	indices := scores.TopK(ctx, opts.numExpertsUsed)
	weights := scores.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, indices)

	experts := hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
	experts = m.Gate.Forward(ctx, experts, indices).SILU(ctx, m.Up.Forward(ctx, experts, indices))
	experts = m.Down.Forward(ctx, experts, indices)
	experts = experts.Mul(ctx, weights)

	expert := func(i int) ml.Tensor {
		return experts.View(
			ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2),
		)
	}

	routedStates := expert(0)
	for i := 1; i < opts.numExpertsUsed; i++ {
		routedStates = routedStates.Add(ctx, expert(i))
	}

	sharedStates := m.SharedExperts.Forward(ctx, hiddenStates, opts)
	return routedStates.Add(ctx, sharedStates)
}

type textMLP struct {
	Gate *nn.Linear `gguf:"ffn_gate"`
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
}

func (m *textMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ textOptions) ml.Tensor {
	hiddenStates = m.Gate.Forward(ctx, hiddenStates).SILU(ctx, m.Up.Forward(ctx, hiddenStates))
	return m.Down.Forward(ctx, hiddenStates)
}