model_text.go 9.05 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
package mllama

import (
	"math"
	"slices"

Jesse Gross's avatar
Jesse Gross committed
7
	"github.com/ollama/ollama/kvcache"
Michael Yang's avatar
Michael Yang committed
8
9
10
11
12
13
14
15
16
17
18
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
)

type TextSelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

Jesse Gross's avatar
Jesse Gross committed
19
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
	batchSize := hiddenState.Dim(1)
	headDim := opts.hiddenSize / opts.numHeads

	query := sa.Query.Forward(ctx, hiddenState)
	query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
	query = query.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)

	key := sa.Key.Forward(ctx, hiddenState)
	key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
	key = key.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)

	value := sa.Value.Forward(ctx, hiddenState)
	value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

Jesse Gross's avatar
Jesse Gross committed
34
35
	cache.Put(ctx, key, value)
	key, value, mask := cache.Get(ctx)
Michael Yang's avatar
Michael Yang committed
36
37
38
39
40

	query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

41
	scores := key.MulmatFullPrec(ctx, query)
Michael Yang's avatar
Michael Yang committed
42
	scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
Jesse Gross's avatar
Jesse Gross committed
43
	scores = scores.Add(ctx, mask)
Michael Yang's avatar
Michael Yang committed
44
45
46
47
48
49
50
51
52
	scores = scores.Softmax(ctx)

	attention := value.Mulmat(ctx, scores)
	attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)

	return sa.Output.Forward(ctx, attention)
}

Jesse Gross's avatar
Jesse Gross committed
53
54
55
56
57
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	// This will only get called for layers in the cache, which are just the self attention layers
	return key.RoPE(ctx, shift, m.RopeFactors, m.ropeDim, m.ropeBase, m.ropeScale), nil
}

Michael Yang's avatar
Michael Yang committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
type TextMLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextModelOptions) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type TextSelfAttentionDecoderLayer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention *TextSelfAttention

	MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
	MLP     *TextMLP
}

77
func (d *TextSelfAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, positions, outputs, mask, _, _ ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
78
79
80
81
	residual := hiddenState

	hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = d.SelfAttention.Forward(ctx, hiddenState, positions, mask, cache, opts)
82
83
84
85
86
87
88
89

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

Michael Yang's avatar
Michael Yang committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = d.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = d.MLP.Forward(ctx, hiddenState, opts)
	return hiddenState.Add(ctx, residual)
}

type TextCrossAttention struct {
	QueryNorm *nn.RMSNorm `gguf:"cross_attn_q_norm"`
	Query     *nn.Linear  `gguf:"cross_attn_q_proj"`
	KeyNorm   *nn.RMSNorm `gguf:"cross_attn_k_norm"`
	Key       *nn.Linear  `gguf:"cross_attn_k_proj"`
	Value     *nn.Linear  `gguf:"cross_attn_v_proj"`
	Output    *nn.Linear  `gguf:"cross_attn_o_proj"`
}

Jesse Gross's avatar
Jesse Gross committed
107
func (ca *TextCrossAttention) Forward(ctx ml.Context, hiddenState, crossAttentionStates ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
108
109
110
111
112
113
114
	batchSize := hiddenState.Dim(1)
	headDim := opts.hiddenSize / opts.numHeads

	query := ca.Query.Forward(ctx, hiddenState)
	query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
	query = ca.QueryNorm.Forward(ctx, query, opts.eps)

Jesse Gross's avatar
Jesse Gross committed
115
116
117
	var key, value ml.Tensor
	if crossAttentionStates != nil {
		numVisionTokens, numTiles := crossAttentionStates.Dim(1), crossAttentionStates.Dim(2)
Michael Yang's avatar
Michael Yang committed
118

Jesse Gross's avatar
Jesse Gross committed
119
120
121
		key = ca.Key.Forward(ctx, crossAttentionStates)
		key = key.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)
		key = ca.KeyNorm.Forward(ctx, key, opts.eps)
Michael Yang's avatar
Michael Yang committed
122

Jesse Gross's avatar
Jesse Gross committed
123
124
125
126
127
128
129
		value = ca.Value.Forward(ctx, crossAttentionStates)
		value = value.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)

		cache.Put(ctx, key, value)
	} else {
		key, value, _ = cache.Get(ctx)
	}
Michael Yang's avatar
Michael Yang committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

	query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

	scores := key.Mulmat(ctx, query)
	scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
	scores = scores.Softmax(ctx)

	attention := value.Mulmat(ctx, scores)
	attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)

	return ca.Output.Forward(ctx, attention)
}

type TextCrossAttentionDecoderLayer struct {
	AttentionNorm  *nn.RMSNorm `gguf:"attn_norm"`
	CrossAttention *TextCrossAttention
	AttentionGate  ml.Tensor `gguf:"cross_attn_attn_gate"`

	MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
	MLP     *TextMLP
	MLPGate ml.Tensor `gguf:"cross_attn_mlp_gate"`
}

156
func (d *TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _, _, _, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
	residual := hiddenState

	hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = d.CrossAttention.Forward(ctx, hiddenState, crossAttentionStates, cache, opts)
	hiddenState = hiddenState.Mul(ctx, d.AttentionGate.Tanh(ctx))
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = d.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = d.MLP.Forward(ctx, hiddenState, opts)
	hiddenState = hiddenState.Mul(ctx, d.MLPGate.Tanh(ctx))
	return hiddenState.Add(ctx, residual)
}

type TextDecoderLayer interface {
172
	Forward(ctx ml.Context, hiddenState, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor
Michael Yang's avatar
Michael Yang committed
173
174
175
176
177
178
}

type TextDecoder struct {
	Layers []TextDecoderLayer
}

179
func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache, opts *TextModelOptions) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
180
	for i, layer := range d.Layers {
Jesse Gross's avatar
Jesse Gross committed
181
182
183
184
185
186
187
188
189
		layerType := selfAttentionLayer
		if slices.Contains(opts.crossAttentionLayers, uint32(i)) {
			layerType = crossAttentionLayer
		}

		cache.SetLayer(i)
		cache.SetLayerType(layerType)

		if layerType == selfAttentionLayer || crossAttentionStates != nil || cache.UnderlyingCache().(*kvcache.EncoderCache).EncoderCached() {
190
191
192
193
194
195
			var lastLayerOutputs ml.Tensor
			if i == len(d.Layers)-1 {
				lastLayerOutputs = outputs
			}

			hiddenState = layer.Forward(ctx, hiddenState, positionIDs, lastLayerOutputs, mask, crossAttentionStates, crossAttentionMask, cache, opts)
Michael Yang's avatar
Michael Yang committed
196
197
198
199
200
201
202
203
204
		}
	}

	return hiddenState
}

type TextModelOptions struct {
	RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`

205
	hiddenSize, numHeads, numKVHeads int
Michael Yang's avatar
Michael Yang committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
	eps, ropeBase, ropeScale         float32
	ropeDim                          uint32

	crossAttentionLayers []uint32
}

type TextModel struct {
	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Transformer    *TextDecoder  `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output"`

	*TextModelOptions
}

221
func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache *kvcache.WrapperCache) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
222
	hiddenState := m.TokenEmbedding.Forward(ctx, inputIDs)
223
	hiddenState = m.Transformer.Forward(ctx, hiddenState, positionIDs, outputs, mask, crossAttentionStates, crossAttentionMask, cache, m.TextModelOptions)
Michael Yang's avatar
Michael Yang committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	return m.Output.Forward(ctx, hiddenState)
}

func newTextModel(c ml.Config) *TextModel {
	var decoderLayers []TextDecoderLayer
	for i := range c.Uint("block_count") {
		var textDecoderLayer TextDecoderLayer
		if slices.Contains(c.Uints("attention.cross_attention_layers"), i) {
			textDecoderLayer = &TextCrossAttentionDecoderLayer{}
		} else {
			textDecoderLayer = &TextSelfAttentionDecoderLayer{}
		}

		decoderLayers = append(decoderLayers, textDecoderLayer)
	}

	return &TextModel{
		Transformer: &TextDecoder{Layers: decoderLayers},
		TextModelOptions: &TextModelOptions{
244
245
246
			hiddenSize:           int(c.Uint("embedding_length")),
			numHeads:             int(c.Uint("attention.head_count")),
			numKVHeads:           int(c.Uint("attention.head_count_kv")),
Michael Yang's avatar
Michael Yang committed
247
248
249
250
251
252
253
254
			eps:                  c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:             c.Float("rope.freq_base"),
			ropeScale:            c.Float("rope.freq_scale", 1),
			ropeDim:              c.Uint("rope.dimension_count"),
			crossAttentionLayers: c.Uints("attention.cross_attention_layers"),
		},
	}
}