model_vision.go 8.57 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
package mllama

import (
	"math"
	"slices"

	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
)

var batchSize int64 = 1

type VisionSelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_out"`

	Gate ml.Tensor `gguf:"attn_gate"`
}

func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
	headDim := opts.hiddenSize / opts.numHeads

	query := sa.Query.Forward(ctx, hiddenState)
	query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), batchSize)
	query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)

	key := sa.Key.Forward(ctx, hiddenState)
	key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), batchSize)
	key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)

	value := sa.Value.Forward(ctx, hiddenState)
	value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), batchSize)
	value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

	scores := key.Mulmat(ctx, query)
	scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
	scores = scores.Softmax(ctx)

	attention := value.Mulmat(ctx, scores)
	attention = attention.Reshape(ctx, headDim, attention.Dim(1), opts.numHeads, batchSize)
	attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)

	hiddenState = sa.Output.Forward(ctx, attention)
	if sa.Gate != nil {
		hiddenState = hiddenState.Mul(ctx, sa.Gate)
	}

	return hiddenState
}

type VisionMLP struct {
	Down *nn.Linear `gguf:"ffn_down"`
	Up   *nn.Linear `gguf:"ffn_up"`

	Gate ml.Tensor `gguf:"ffn_gate"`
}

func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
	hiddenState = mlp.Down.Forward(ctx, hiddenState).GELU(ctx)
	hiddenState = mlp.Up.Forward(ctx, hiddenState)
	if mlp.Gate != nil {
		hiddenState = hiddenState.Mul(ctx, mlp.Gate)
	}

	return hiddenState
}

type VisionEncoderLayer struct {
	AttentionNorm *nn.LayerNorm `gguf:"ln1"`
	SelfAttention *VisionSelfAttention

	MLPNorm *nn.LayerNorm `gguf:"ln2"`
	MLP     *VisionMLP
}

func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
	residual := hiddenState

	// self attention
	hiddenState = e.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = e.SelfAttention.Forward(ctx, hiddenState, opts)
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	// feed forward
	hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
	return hiddenState.Add(ctx, residual)
}

type VisionEncoder struct {
	Layers []VisionEncoderLayer
}

func (e *VisionEncoder) Forward(ctx ml.Context, hiddenState ml.Tensor, intermediateLayersIndices []uint32, opts *VisionModelOptions) (ml.Tensor, []ml.Tensor) {
	var intermediateHiddenStates []ml.Tensor
	for i, layer := range e.Layers {
		if slices.Contains(intermediateLayersIndices, uint32(i)) {
			intermediateHiddenStates = append(intermediateHiddenStates, hiddenState.Reshape(ctx, append([]int64{1}, hiddenState.Shape()...)...))
		}

		hiddenState = layer.Forward(ctx, hiddenState, opts)
	}

	return hiddenState, intermediateHiddenStates
}

type PrecomputedAspectRatioEmbedding struct {
	Embedding *nn.Embedding
	Gate      ml.Tensor `gguf:"gate"`
}

func (e *PrecomputedAspectRatioEmbedding) Forward(ctx ml.Context, hiddenState ml.Tensor, aspectRatioIDs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
	embeddings := e.Embedding.Forward(ctx, aspectRatioIDs)
	embeddings = embeddings.Reshape(ctx, opts.hiddenSize, 1, opts.numTiles)
	if e.Gate != nil {
		embeddings = embeddings.Mul(ctx, e.Gate)
	}

	return hiddenState.Add(ctx, embeddings)
}

type PrecomputedPositionEmbedding struct {
	PositionEmbedding     *nn.Embedding `gguf:"position_embd"`
	PositionEmbeddingGate ml.Tensor     `gguf:"position_embd.gate"`

	TilePositionEmbedding     *nn.Embedding `gguf:"tile_position_embd"`
	TilePositionEmbeddingGate ml.Tensor     `gguf:"tile_position_embd.gate"`
}

func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs, aspectRatioIDs ml.Tensor, numPositions int64, opts *VisionModelOptions) ml.Tensor {
	positionEmbedding := e.PositionEmbedding.Forward(ctx, positionIDs)
	if e.PositionEmbeddingGate != nil {
		positionEmbedding = positionEmbedding.Mul(ctx, e.PositionEmbeddingGate)
	}

	hiddenState = hiddenState.Add(ctx, positionEmbedding)

	tilePositionEmbedding := e.TilePositionEmbedding.Forward(ctx, aspectRatioIDs)
	tilePositionEmbedding = tilePositionEmbedding.Reshape(ctx, opts.hiddenSize, numPositions, opts.numTiles)
	if e.TilePositionEmbeddingGate != nil {
		tilePositionEmbedding = tilePositionEmbedding.Mul(ctx, e.TilePositionEmbeddingGate)
	}

	return hiddenState.Add(ctx, tilePositionEmbedding)
}

type VisionModelOptions struct {
	hiddenSize, numHeads, numTiles int64
	imageSize, patchSize           int
	eps                            float32

	intermediateLayersIndices []uint32
}

type VisionModel struct {
	PatchEmbeddings *nn.Conv2D `gguf:"patch_embd"`

	PreTilePositionEmbedding  *PrecomputedAspectRatioEmbedding `gguf:"pre_tile_position_embd"`
	PostTilePositionEmbedding *PrecomputedAspectRatioEmbedding `gguf:"post_tile_position_embd"`
	PositionEmbedding         *PrecomputedPositionEmbedding

	PreLayerNorm   *nn.LayerNorm `gguf:"pre_ln"`
	PostLayerNorm  *nn.LayerNorm `gguf:"post_ln"`
	ClassEmbedding ml.Tensor     `gguf:"class_embd"`

	Transformer       *VisionEncoder `gguf:"blk"`
	GlobalTransformer *VisionEncoder `gguf:"global.blk"`

	*VisionModelOptions
}

func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRatioIDs ml.Tensor) ml.Tensor {
	numPatches := int64((m.imageSize / m.patchSize) * (m.imageSize / m.patchSize))
	numPositions := numPatches
	if m.ClassEmbedding != nil {
		numPositions++
	}

	hiddenState := m.PatchEmbeddings.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
	hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize, m.numTiles)
	hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)

	hiddenState = m.PreTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
	hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, int(m.numTiles)-1)...).Concat(ctx, hiddenState, 1)

	hiddenState = m.PositionEmbedding.Forward(ctx, hiddenState, positionIDs, aspectRatioIDs, numPositions, m.VisionModelOptions)
	hiddenState = m.PreLayerNorm.Forward(ctx, hiddenState, m.eps)

	numPaddingPatches := 8 - (hiddenState.Dim(1)%8)%8
	hiddenState = hiddenState.Pad(ctx, 0, numPaddingPatches, 0, 0)

	hiddenState = hiddenState.Reshape(ctx, hiddenState.Dim(0), hiddenState.Dim(1)*hiddenState.Dim(2), batchSize)
	hiddenState, intermediateHiddenStates := m.Transformer.Forward(ctx, hiddenState, m.intermediateLayersIndices, m.VisionModelOptions)

	hiddenState = m.PostLayerNorm.Forward(ctx, hiddenState, m.eps)

	hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
	hiddenState = m.PostTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)

	hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, m.numTiles*(numPositions+numPaddingPatches), batchSize)
	hiddenState, _ = m.GlobalTransformer.Forward(ctx, hiddenState, nil, m.VisionModelOptions)

	hiddenStates := intermediateHiddenStates[0].Stack(ctx, 0, intermediateHiddenStates[1:]...)
	hiddenStates = hiddenStates.Reshape(ctx, int64(len(intermediateHiddenStates))*m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
	hiddenStates = hiddenStates.Unpad(ctx, 0, numPaddingPatches, 0, 0)

	hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
	hiddenState = hiddenState.Unpad(ctx, 0, numPaddingPatches, 0, 0)
	return hiddenState.Concat(ctx, hiddenStates, 0)
}

func newVisionModel(c ml.Config) *VisionModel {
	return &VisionModel{
		Transformer:       &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count"))},
		GlobalTransformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.global.block_count"))},

		VisionModelOptions: &VisionModelOptions{
			hiddenSize: int64(c.Uint("vision.embedding_length")),
			numHeads:   int64(c.Uint("vision.attention.head_count")),
			numTiles:   int64(c.Uint("vision.max_num_tiles")),

			imageSize: int(c.Uint("vision.image_size")),
			patchSize: int(c.Uint("vision.patch_size")),

			eps: c.Float("vision.attention.layer_norm_epsilon"),

			intermediateLayersIndices: c.Uints("vision.intermediate_layers_indices"),
		},
	}
}