model_text.go 8.01 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
package mllama

import (
	"math"
	"slices"

	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
)

type TextSelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, mask ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
	batchSize := hiddenState.Dim(1)
	headDim := opts.hiddenSize / opts.numHeads

	query := sa.Query.Forward(ctx, hiddenState)
	query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
	query = query.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)

	key := sa.Key.Forward(ctx, hiddenState)
	key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
	key = key.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)

	value := sa.Value.Forward(ctx, hiddenState)
	value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

	key, value = cache.Put(ctx, key, value, cache.Options)

	query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

	scores := key.Mulmat(ctx, query)
	scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))

	if mask != nil {
		scores = scores.Add(ctx, mask)
	}

	scores = scores.Softmax(ctx)

	attention := value.Mulmat(ctx, scores)
	attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)

	return sa.Output.Forward(ctx, attention)
}

type TextMLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextModelOptions) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type TextSelfAttentionDecoderLayer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention *TextSelfAttention

	MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
	MLP     *TextMLP
}

func (d *TextSelfAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, positions, mask, _, _ ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
	residual := hiddenState

	hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = d.SelfAttention.Forward(ctx, hiddenState, positions, mask, cache, opts)
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = d.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = d.MLP.Forward(ctx, hiddenState, opts)
	return hiddenState.Add(ctx, residual)
}

type TextCrossAttention struct {
	QueryNorm *nn.RMSNorm `gguf:"cross_attn_q_norm"`
	Query     *nn.Linear  `gguf:"cross_attn_q_proj"`
	KeyNorm   *nn.RMSNorm `gguf:"cross_attn_k_norm"`
	Key       *nn.Linear  `gguf:"cross_attn_k_proj"`
	Value     *nn.Linear  `gguf:"cross_attn_v_proj"`
	Output    *nn.Linear  `gguf:"cross_attn_o_proj"`
}

func (ca *TextCrossAttention) Forward(ctx ml.Context, hiddenState, crossAttentionStates ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
	batchSize := hiddenState.Dim(1)
	headDim := opts.hiddenSize / opts.numHeads
	numVisionTokens, numTiles := crossAttentionStates.Dim(1), crossAttentionStates.Dim(2)

	query := ca.Query.Forward(ctx, hiddenState)
	query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
	query = ca.QueryNorm.Forward(ctx, query, opts.eps)

	key := ca.Key.Forward(ctx, crossAttentionStates)
	key = key.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)
	key = ca.KeyNorm.Forward(ctx, key, opts.eps)

	value := ca.Value.Forward(ctx, crossAttentionStates)
	value = value.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)

	// TODO cache key, value

	query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

	scores := key.Mulmat(ctx, query)
	scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
	scores = scores.Softmax(ctx)

	attention := value.Mulmat(ctx, scores)
	attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)

	return ca.Output.Forward(ctx, attention)
}

type TextCrossAttentionDecoderLayer struct {
	AttentionNorm  *nn.RMSNorm `gguf:"attn_norm"`
	CrossAttention *TextCrossAttention
	AttentionGate  ml.Tensor `gguf:"cross_attn_attn_gate"`

	MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
	MLP     *TextMLP
	MLPGate ml.Tensor `gguf:"cross_attn_mlp_gate"`
}

func (d TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _, _, crossAttentionStates, crossAttentionMask ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
	residual := hiddenState

	hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = d.CrossAttention.Forward(ctx, hiddenState, crossAttentionStates, cache, opts)
	hiddenState = hiddenState.Mul(ctx, d.AttentionGate.Tanh(ctx))
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = d.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = d.MLP.Forward(ctx, hiddenState, opts)
	hiddenState = hiddenState.Mul(ctx, d.MLPGate.Tanh(ctx))
	return hiddenState.Add(ctx, residual)
}

type TextDecoderLayer interface {
	Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor
}

type TextDecoder struct {
	Layers []TextDecoderLayer
}

func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
	for i, layer := range d.Layers {
		if !slices.Contains(opts.crossAttentionLayers, uint32(i)) || crossAttentionStates != nil {
			hiddenState = layer.Forward(ctx, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask, cache.Sub(i), opts)
		}
	}

	return hiddenState
}

type TextModelOptions struct {
	RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`

	hiddenSize, numHeads, numKVHeads int64
	eps, ropeBase, ropeScale         float32
	ropeDim                          uint32

	crossAttentionLayers []uint32
}

type TextModel struct {
	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Transformer    *TextDecoder  `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output"`

	*TextModelOptions
}

func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache model.Cache) ml.Tensor {
	hiddenState := m.TokenEmbedding.Forward(ctx, inputIDs)
	hiddenState = m.Transformer.Forward(ctx, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask, cache, m.TextModelOptions)
	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	return m.Output.Forward(ctx, hiddenState)
}

func newTextModel(c ml.Config) *TextModel {
	var decoderLayers []TextDecoderLayer
	for i := range c.Uint("block_count") {
		var textDecoderLayer TextDecoderLayer
		if slices.Contains(c.Uints("attention.cross_attention_layers"), i) {
			textDecoderLayer = &TextCrossAttentionDecoderLayer{}
		} else {
			textDecoderLayer = &TextSelfAttentionDecoderLayer{}
		}

		decoderLayers = append(decoderLayers, textDecoderLayer)
	}

	return &TextModel{
		Transformer: &TextDecoder{Layers: decoderLayers},
		TextModelOptions: &TextModelOptions{
			hiddenSize:           int64(c.Uint("embedding_length")),
			numHeads:             int64(c.Uint("attention.head_count")),
			numKVHeads:           int64(c.Uint("attention.head_count_kv")),
			eps:                  c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:             c.Float("rope.freq_base"),
			ropeScale:            c.Float("rope.freq_scale", 1),
			ropeDim:              c.Uint("rope.dimension_count"),
			crossAttentionLayers: c.Uints("attention.cross_attention_layers"),
		},
	}
}