model.go 4.7 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
package llama

import (
	"math"

	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
)

type Options struct {
	RopeFactors                      ml.Tensor `gguf:"rope_freqs.weight"`
	hiddenSize, numHeads, numKVHeads int64
	eps, ropeBase, ropeScale         float32
	ropeDim                          uint32
}

type Model struct {
	model.Base
	model.BytePairEncoding

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	*Options
}

func New(c ml.Config) (model.Model, error) {
	return &Model{
		BytePairEncoding: model.NewBytePairEncoding(
			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Uints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
				BOS:    c.Uint("tokenizer.ggml.bos_token_id"),
				EOS:    c.Uint("tokenizer.ggml.eos_token_id"),
			},
		),
		Layers: make([]Layer, c.Uint("block_count")),
		Options: &Options{
			hiddenSize: int64(c.Uint("embedding_length")),
			numHeads:   int64(c.Uint("attention.head_count")),
			numKVHeads: int64(c.Uint("attention.head_count_kv")),
			eps:        c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:   c.Float("rope.freq_base"),
			ropeScale:  c.Float("rope.freq_scale", 1),
			ropeDim:    c.Uint("rope.dimension_count"),
		},
	}, nil
}

type SelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
	batchSize := hiddenState.Dim(1)
	headDim := opts.hiddenSize / opts.numHeads

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
	q = q.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
	k = k.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

	k, v = cache.Put(ctx, k, v, cache.Options)

	q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

	kq := k.Mulmat(ctx, q)
	kq = kq.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
	kq = kq.Softmax(ctx)

	kqv := v.Mulmat(ctx, kq)
	kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)

	return sa.Output.Forward(ctx, kqv)
}

type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention *SelfAttention
	MLPNorm       *nn.RMSNorm `gguf:"ffn_norm"`
	MLP           *MLP
}

func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	return hiddenState.Add(ctx, residual)
}

func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
	inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
	if err != nil {
		return nil, err
	}

	positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
	if err != nil {
		return nil, err
	}

	hiddenState := m.TokenEmbedding.Forward(ctx, inputs)

	for i, layer := range m.Layers {
		hiddenState = layer.Forward(ctx, hiddenState, positions, opts.Cache.Sub(i), m.Options)
	}

	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	hiddenState = m.Output.Forward(ctx, hiddenState)

	outputs, err := ctx.FromIntSlice([]int32{int32(len(opts.Positions())) - 1}, 1)
	if err != nil {
		return nil, err
	}

	return hiddenState.Rows(ctx, outputs), nil
}

func init() {
	model.Register("llama", New)
}