model_text.go 4.43 KB
Newer Older
1
2
3
package mistral3

import (
4
	"cmp"
5
6
7
8
9
10
	"math"

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
11
	"github.com/ollama/ollama/ml/nn/fast"
12
13
14
15
	"github.com/ollama/ollama/model/input"
)

type TextOptions struct {
16
17
18
	hiddenSize, numHeads, numKVHeads int
	headDim, ropeDim                 int
	eps, ropeBase, ropeScale         float32
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
}

type TextModel struct {
	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	*TextOptions
}

type SelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
	batchSize := hiddenState.Dim(1)
39
	headDim := cmp.Or(opts.headDim, opts.hiddenSize/opts.numHeads)
40
41
42

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
43
	q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale)
44
45
46

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
47
	k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale)
48
49
50
51
52
53
54
55
56
57

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

	kqv := nn.Attention(ctx, q, k, v, 1.0/math.Sqrt(float64(headDim)), cache)
	kqv = kqv.Reshape(ctx, headDim*opts.numHeads, batchSize)
	return sa.Output.Forward(ctx, kqv)
}

func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
58
	return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale), nil
59
60
61
62
63
64
65
66
67
}

type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
68
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention *SelfAttention
	MLPNorm       *nn.RMSNorm `gguf:"ffn_norm"`
	MLP           *MLP
}

func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	return hiddenState.Add(ctx, residual)
}

func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
	hiddenState := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx)

	// image embeddings
	for _, image := range batch.Multimodal {
105
		imageFeature := image.Multimodal[0].Tensor
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
		ctx.Forward(imageFeature.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), imageFeature.Dim(0)*imageFeature.Dim(1))))
	}

	for i, layer := range m.Layers {
		cache.SetLayer(i)

		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}

		hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
	}

	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	return m.Output.Forward(ctx, hiddenState)
}

124
125
func newTextModel(c fs.Config) *TextModel {
	return &TextModel{
126
127
128
129
130
131
		Layers: make([]Layer, c.Uint("block_count")),
		TextOptions: &TextOptions{
			hiddenSize: int(c.Uint("embedding_length")),
			numHeads:   int(c.Uint("attention.head_count")),
			numKVHeads: int(c.Uint("attention.head_count_kv")),
			headDim:    int(c.Uint("attention.key_length")),
132
			ropeDim:    int(c.Uint("rope.dimension_count")),
133
134
			eps:        c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:   c.Float("rope.freq_base"),
135
			ropeScale:  c.Float("rope.scaling.factor", 1),
136
137
138
		},
	}
}