model.go 5.34 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
package llama

import (
	"math"

Jesse Gross's avatar
Jesse Gross committed
6
	"github.com/ollama/ollama/kvcache"
Michael Yang's avatar
Michael Yang committed
7
8
9
10
11
12
13
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
)

type Options struct {
	RopeFactors                      ml.Tensor `gguf:"rope_freqs.weight"`
14
	hiddenSize, numHeads, numKVHeads int
Michael Yang's avatar
Michael Yang committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
	eps, ropeBase, ropeScale         float32
	ropeDim                          uint32
}

type Model struct {
	model.Base
	model.BytePairEncoding

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"`

	*Options
}

func New(c ml.Config) (model.Model, error) {
Jesse Gross's avatar
Jesse Gross committed
32
	m := Model{
Michael Yang's avatar
Michael Yang committed
33
34
35
36
37
38
		BytePairEncoding: model.NewBytePairEncoding(
			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Types:  c.Uints("tokenizer.ggml.token_type"),
				Merges: c.Strings("tokenizer.ggml.merges"),
39
				BOS:    int32(c.Uint("tokenizer.ggml.bos_token_id")),
40
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
41
				EOS:    int32(c.Uint("tokenizer.ggml.eos_token_id")),
42
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
Michael Yang's avatar
Michael Yang committed
43
44
45
46
			},
		),
		Layers: make([]Layer, c.Uint("block_count")),
		Options: &Options{
47
48
49
			hiddenSize: int(c.Uint("embedding_length")),
			numHeads:   int(c.Uint("attention.head_count")),
			numKVHeads: int(c.Uint("attention.head_count_kv")),
Michael Yang's avatar
Michael Yang committed
50
51
52
53
54
			eps:        c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:   c.Float("rope.freq_base"),
			ropeScale:  c.Float("rope.freq_scale", 1),
			ropeDim:    c.Uint("rope.dimension_count"),
		},
Jesse Gross's avatar
Jesse Gross committed
55
56
57
58
59
	}

	m.Cache = kvcache.NewCausalCache(m.Shift)

	return &m, nil
Michael Yang's avatar
Michael Yang committed
60
61
62
63
64
65
66
67
68
}

type SelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

Jesse Gross's avatar
Jesse Gross committed
69
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
	batchSize := hiddenState.Dim(1)
	headDim := opts.hiddenSize / opts.numHeads

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
	q = q.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
	k = k.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)

Jesse Gross's avatar
Jesse Gross committed
84
85
	cache.Put(ctx, k, v)
	k, v, mask := cache.Get(ctx)
Michael Yang's avatar
Michael Yang committed
86
87
88
89
90

	q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

91
92
	scaleFactor := 1.0 / math.Sqrt(float64(headDim))
	kqv := nn.Attention(ctx, q, k, v, mask, scaleFactor)
Michael Yang's avatar
Michael Yang committed
93
94
95
96
97
	kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)

	return sa.Output.Forward(ctx, kqv)
}

Jesse Gross's avatar
Jesse Gross committed
98
99
100
101
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	return key.RoPE(ctx, shift, m.Options.RopeFactors, m.Options.ropeDim, m.Options.ropeBase, m.Options.ropeScale), nil
}

Michael Yang's avatar
Michael Yang committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention *SelfAttention
	MLPNorm       *nn.RMSNorm `gguf:"ffn_norm"`
	MLP           *MLP
}

120
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Michael Yang's avatar
Michael Yang committed
121
122
123
124
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
125
126
127
128
129
130
131
132

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

Michael Yang's avatar
Michael Yang committed
133
134
135
136
137
138
139
140
141
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	return hiddenState.Add(ctx, residual)
}

func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
Jesse Gross's avatar
Jesse Gross committed
142
	inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
Michael Yang's avatar
Michael Yang committed
143
144
145
146
	if err != nil {
		return nil, err
	}

Jesse Gross's avatar
Jesse Gross committed
147
	positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
Michael Yang's avatar
Michael Yang committed
148
149
150
151
	if err != nil {
		return nil, err
	}

152
153
154
155
156
	outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
	if err != nil {
		return nil, err
	}

Michael Yang's avatar
Michael Yang committed
157
158
159
	hiddenState := m.TokenEmbedding.Forward(ctx, inputs)

	for i, layer := range m.Layers {
Jesse Gross's avatar
Jesse Gross committed
160
		m.Cache.SetLayer(i)
Michael Yang's avatar
Michael Yang committed
161

162
163
164
165
		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}
Michael Yang's avatar
Michael Yang committed
166

167
		hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
Michael Yang's avatar
Michael Yang committed
168
169
	}

170
171
	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	return m.Output.Forward(ctx, hiddenState), nil
Michael Yang's avatar
Michael Yang committed
172
173
174
175
176
}

func init() {
	model.Register("llama", New)
}