count-equal.cu 3.22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/**
 * llama.cpp - commit 40c6d79fb52f995f47507fedfeaae2ac05d9b35c - do not edit this file
 *
 * MIT License
 *
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "common.cuh"
#include "count-equal.cuh"

#include <cstdint>

template <typename T>
static __global__ void count_equal(const T * __restrict__ x, const T * __restrict__ y, int64_t * __restrict__ dst, const int64_t dk, const int64_t k) {
    const int64_t i0 = (int64_t) blockIdx.x*dk;
    const int64_t i1 = min(i0 + dk, k);

    int nequal = 0;

    for (int64_t i = i0 + threadIdx.x; i < i1; i += WARP_SIZE) {
        const T xi = x[i];
        const T yi = y[i];
        nequal += xi == yi;
    }

    nequal = warp_reduce_sum(nequal);

    if (threadIdx.x != 0) {
        return;
    }

    atomicAdd((int *) dst, nequal);
}

void ggml_cuda_count_equal(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * src0 = dst->src[0];
    const ggml_tensor * src1 = dst->src[1];

    GGML_ASSERT(src0->type == src1->type);
    GGML_ASSERT( dst->type == GGML_TYPE_I64);

    GGML_ASSERT(ggml_are_same_shape(src0, src1));
    GGML_ASSERT(ggml_is_contiguous(src0));
    GGML_ASSERT(ggml_is_contiguous(src1));
    GGML_ASSERT(ggml_is_contiguous(dst));

    int64_t * dst_d  = (int64_t *) dst->data;

    cudaStream_t stream = ctx.stream();
    const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;

    const int64_t ne = ggml_nelements(src0);
    GGML_ASSERT(ne < (1 << 30) && "atomicAdd implementation only supports int");
    const int64_t dne = GGML_PAD((ne + 4*nsm - 1) / (4*nsm), CUDA_COUNT_EQUAL_CHUNK_SIZE);

    CUDA_CHECK(cudaMemsetAsync(dst_d, 0, ggml_nbytes(dst), stream));

    const dim3 blocks_dim(WARP_SIZE, 1, 1);
    const dim3 blocks_num(std::min((int64_t)4*nsm, (ne + CUDA_COUNT_EQUAL_CHUNK_SIZE - 1)/CUDA_COUNT_EQUAL_CHUNK_SIZE), 1, 1);

    switch (src0->type) {
        case GGML_TYPE_I32: {
            const int * src0_d = (const int *) src0->data;
            const int * src1_d = (const int *) src1->data;
            count_equal<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, src1_d, dst_d, dne, ne);
        } break;
        default:
            GGML_ASSERT(false);
            break;
    }
}