safetensors.go 7.32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
package convert

import (
	"bytes"
	"encoding/binary"
	"encoding/json"
	"fmt"
	"io"
	"log/slog"
	"os"
	"path/filepath"
	"regexp"
	"slices"

	"github.com/d4l3k/go-bfloat16"
	"github.com/mitchellh/mapstructure"
	"github.com/x448/float16"

	"github.com/ollama/ollama/llm"
)

type safetensorWriterTo struct {
	t *llm.Tensor

	params *Params
	bo     ByteOrder

	filename string

	start, end, padding uint64
	handler             func(w io.Writer, r safetensorWriterTo, f *os.File) error
}

type tensorMetaData struct {
	Type    string `mapstructure:"dtype"`
	Shape   []int  `mapstructure:"shape"`
	Offsets []int  `mapstructure:"data_offsets"`
}

type SafetensorFormat struct{}

func (m *SafetensorFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
	slog.Debug("getting tensor data")
	var tensors []llm.Tensor
	files, err := filepath.Glob(filepath.Join(dirpath, "/model-*.safetensors"))
	if err != nil {
		return nil, err
	}

	var offset uint64
	for _, f := range files {
		var t []llm.Tensor
		var err error
		t, offset, err = m.readTensors(f, offset, params)
		if err != nil {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
56
			slog.Error(err.Error())
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
			return nil, err
		}
		tensors = append(tensors, t...)
	}
	slog.Debug(fmt.Sprintf("all tensors = %d", len(tensors)))
	return tensors, nil
}

func (m *SafetensorFormat) readTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
	f, err := os.Open(fn)
	if err != nil {
		return nil, 0, err
	}
	defer f.Close()

	var jsonSize uint64
	if err := binary.Read(f, binary.LittleEndian, &jsonSize); err != nil {
		return nil, 0, err
	}

	buf := make([]byte, jsonSize)
	_, err = io.ReadFull(f, buf)
	if err != nil {
		return nil, 0, err
	}

	d := json.NewDecoder(bytes.NewBuffer(buf))
	d.UseNumber()
	var parsed map[string]interface{}
	if err = d.Decode(&parsed); err != nil {
		return nil, 0, err
	}

	var keys []string
	for k := range parsed {
		keys = append(keys, k)
	}

	slices.Sort(keys)
	slog.Info("converting layers")

	var tensors []llm.Tensor
	for _, k := range keys {
		vals := parsed[k].(map[string]interface{})
		var data tensorMetaData
		if err = mapstructure.Decode(vals, &data); err != nil {
			slog.Error("couldn't decode properly")
			return nil, 0, err
		}

		var size uint64
		var kind uint32
		switch len(data.Shape) {
		case 0:
			// metadata
			continue
		case 1:
			// convert to float32
			kind = 0
			size = uint64(data.Shape[0] * 4)
		case 2:
			// convert to float16
			kind = 1
			size = uint64(data.Shape[0] * data.Shape[1] * 2)
		}

		ggufName, err := m.GetLayerName(k)
		if err != nil {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
125
			slog.Error(err.Error())
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
			return nil, 0, err
		}

		shape := []uint64{0, 0, 0, 0}
		for i := range data.Shape {
			shape[i] = uint64(data.Shape[i])
		}

		t := llm.Tensor{
			Name:   ggufName,
			Kind:   kind,
			Offset: offset,
			Shape:  shape[:],
		}

		t.WriterTo = safetensorWriterTo{
			t:        &t,
			params:   params,
			bo:       params.ByteOrder,
			filename: fn,
			start:    uint64(data.Offsets[0]),
			end:      uint64(data.Offsets[1]),
			padding:  8 + jsonSize,
		}

		offset += size
152
		tensors = append(tensors, t)
153
	}
154

155
156
	slog.Debug(fmt.Sprintf("total tensors for file = %d", len(tensors)))
	slog.Debug(fmt.Sprintf("offset = %d", offset))
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
	return tensors, offset, nil
}

func (m *SafetensorFormat) GetParams(dirpath string) (*Params, error) {
	f, err := os.Open(filepath.Join(dirpath, "config.json"))
	if err != nil {
		return nil, err
	}
	defer f.Close()

	var params Params

	d := json.NewDecoder(f)
	err = d.Decode(&params)
	if err != nil {
		return nil, err
	}

	params.ByteOrder = binary.LittleEndian
	return &params, nil
}

func (m *SafetensorFormat) GetLayerName(n string) (string, error) {
	directMap := map[string]string{
		"model.embed_tokens.weight": "token_embd.weight",
		"lm_head.weight":            "output.weight",
		"model.norm.weight":         "output_norm.weight",
	}

	tMap := map[string]string{
188
189
190
191
192
193
194
195
196
197
198
199
200
		"model.layers.(\\d+).input_layernorm.weight":                    "blk.$1.attn_norm.weight",
		"model.layers.(\\d+).mlp.down_proj.weight":                      "blk.$1.ffn_down.weight",
		"model.layers.(\\d+).mlp.gate_proj.weight":                      "blk.$1.ffn_gate.weight",
		"model.layers.(\\d+).mlp.up_proj.weight":                        "blk.$1.ffn_up.weight",
		"model.layers.(\\d+).post_attention_layernorm.weight":           "blk.$1.ffn_norm.weight",
		"model.layers.(\\d+).self_attn.k_proj.weight":                   "blk.$1.attn_k.weight",
		"model.layers.(\\d+).self_attn.o_proj.weight":                   "blk.$1.attn_output.weight",
		"model.layers.(\\d+).self_attn.q_proj.weight":                   "blk.$1.attn_q.weight",
		"model.layers.(\\d+).self_attn.v_proj.weight":                   "blk.$1.attn_v.weight",
		"model.layers.(\\d+).block_sparse_moe.gate.weight":              "blk.$1.ffn_gate_inp.weight",
		"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w1.weight": "blk.$1.ffn_gate.$2.weight",
		"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w2.weight": "blk.$1.ffn_down.$2.weight",
		"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w3.weight": "blk.$1.ffn_up.$2.weight",
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
	}

	v, ok := directMap[n]
	if ok {
		return v, nil
	}

	// quick hack to rename the layers to gguf format
	for k, v := range tMap {
		re := regexp.MustCompile(k)
		newName := re.ReplaceAllString(n, v)
		if newName != n {
			return newName, nil
		}
	}

	return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}

func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
	f, err := os.Open(r.filename)
	if err != nil {
		return 0, err
	}
	defer f.Close()

	if _, err = f.Seek(int64(r.padding+r.start), 0); err != nil {
		return 0, err
	}

	// use the handler if one is present
	if r.handler != nil {
		return 0, r.handler(w, r, f)
	}

	remaining := r.end - r.start

	bufSize := uint64(10240)
	var finished bool
	for {
		data := make([]byte, min(bufSize, remaining))

		b, err := io.ReadFull(f, data)
		remaining -= uint64(b)

		if err == io.EOF || remaining <= 0 {
			finished = true
		} else if err != nil {
			return 0, err
		}

		// convert bfloat16 -> ieee float32
		tDataF32 := bfloat16.DecodeFloat32(data)

		switch r.t.Kind {
		case 0:
			if err := binary.Write(w, r.bo, tDataF32); err != nil {
				return 0, err
			}
		case 1:
			// convert float32 -> float16
			tempBuf := make([]uint16, len(data)/2)
			for cnt, v := range tDataF32 {
				tDataF16 := float16.Fromfloat32(v)
				tempBuf[cnt] = uint16(tDataF16)
			}
			if err := binary.Write(w, r.bo, tempBuf); err != nil {
				return 0, err
			}
		}
		if finished {
			break
		}
	}
	return 0, nil
}

func (m *SafetensorFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
	switch len(params.Architectures) {
	case 0:
		return nil, fmt.Errorf("No architecture specified to convert")
	case 1:
		switch params.Architectures[0] {
		case "MistralForCausalLM":
			return &MistralModel{
				ModelData{
					Name:   name,
					Path:   dirPath,
					Params: params,
					Format: m,
				},
			}, nil
293
294
295
296
297
298
299
300
301
		case "MixtralForCausalLM":
			return &MixtralModel{
				ModelData{
					Name:   name,
					Path:   dirPath,
					Params: params,
					Format: m,
				},
			}, nil
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
		case "GemmaForCausalLM":
			return &GemmaModel{
				ModelData{
					Name:   name,
					Path:   dirPath,
					Params: params,
					Format: m,
				},
			}, nil
		default:
			return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
		}
	}

	return nil, fmt.Errorf("Unknown error")
}