process_image.go 6.21 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
package mllama

import (
	"image"
	"image/color"
	"math"
	"slices"

	"golang.org/x/image/draw"

	"github.com/ollama/ollama/ml"
)

type ImageProcessor struct {
	imageSize, numChannels, maxNumTiles int
}

func newImageProcessor(c ml.Config) ImageProcessor {
	return ImageProcessor{
		imageSize:   int(c.Uint("vision.image_size")),
		numChannels: int(c.Uint("vision.num_channels")),
		maxNumTiles: int(c.Uint("vision.max_num_tiles")),
	}
}

func (p *ImageProcessor) supportedAspectRatios(maxTiles int) []image.Point {
	ratios := []image.Point{}

	for w := range maxTiles {
		for h := range maxTiles {
			if (w+1)*(h+1) <= maxTiles {
				ratios = append(ratios, image.Point{w + 1, h + 1})
			}
		}
	}

	return ratios
}

func (p *ImageProcessor) clip(a, a_min, a_max int) int {
	if a < a_min {
		return a_min
	} else if a > a_max {
		return a_max
	}

	return a
}

func (p *ImageProcessor) fitToCanvas(imageSize, canvasSize image.Point, tileSize int) image.Point {
	targetWidth := p.clip(imageSize.X, tileSize, canvasSize.X)
	targetHeight := p.clip(imageSize.Y, tileSize, canvasSize.Y)

	scaleWidth := float64(targetWidth) / float64(imageSize.X)
	scaleHeight := float64(targetHeight) / float64(imageSize.Y)

	var w, h int

	if scaleWidth < scaleHeight {
		w = targetWidth
		h = min(int(math.Floor(float64(imageSize.Y)*scaleWidth)), targetHeight)
	} else {
		w = min(int(math.Floor(float64(imageSize.X)*scaleHeight)), targetWidth)
		h = targetHeight
	}

	return image.Point{w, h}
}

func (p *ImageProcessor) optimalTiledCanvas(imageSize image.Point, maxImageTiles, tileSize int) image.Point {
	possibleTileArrangements := p.supportedAspectRatios(maxImageTiles)
	possibleCanvasSizes := []image.Point{}
	for _, pta := range possibleTileArrangements {
		possibleCanvasSizes = append(possibleCanvasSizes, image.Point{pta.X * tileSize, pta.Y * tileSize})
	}

	scales := []float64{}

	for _, pcs := range possibleCanvasSizes {
		scaleHeight := float64(pcs.Y) / float64(imageSize.Y)
		scaleWidth := float64(pcs.X) / float64(imageSize.X)

		if scaleWidth > scaleHeight {
			scales = append(scales, scaleHeight)
		} else {
			scales = append(scales, scaleWidth)
		}
	}

	var minUpscale float64
	var maxDownscale float64
	var upscale bool

	for _, s := range scales {
		if s > 1.0 {
			upscale = true
			if minUpscale == 0 {
				minUpscale = s
			} else {
				minUpscale = math.Min(minUpscale, s)
			}
		} else {
			maxDownscale = math.Max(maxDownscale, s)
		}
	}

	selectedScale := maxDownscale
	if upscale {
		selectedScale = minUpscale
	}

	var selectedCanvas image.Point
	for n, pcs := range possibleCanvasSizes {
		if scales[n] == selectedScale {
			// choose the smallest possible canvas
			if selectedCanvas.X == 0 && selectedCanvas.Y == 0 {
				selectedCanvas = pcs
			} else if pcs.X*pcs.Y < selectedCanvas.X*selectedCanvas.Y {
				selectedCanvas = pcs
			}
		}
	}
	return selectedCanvas
}

func (p *ImageProcessor) splitToTiles(img image.Image, numTilesSize image.Point) []image.Image {
	b := img.Bounds()
	width := b.Max.X - b.Min.X
	height := b.Max.Y - b.Min.Y
	tileHeight := height / numTilesSize.Y
	tileWidth := width / numTilesSize.X

	images := []image.Image{}

	for h := range numTilesSize.Y {
		for w := range numTilesSize.X {
			rect := image.Rect(tileWidth*w, tileHeight*h, tileWidth*(w+1), tileHeight*(h+1))
			images = append(images, img.(interface {
				SubImage(image.Rectangle) image.Image
			}).SubImage(rect))
		}
	}

	return images
}

// remove the "alpha" channel by drawing over a prefilled image
//
//nolint:unused
func (p *ImageProcessor) compositeImage(img image.Image) image.Image {
	dst := image.NewRGBA(img.Bounds())

	white := color.RGBA{255, 255, 255, 255}
	draw.Draw(dst, dst.Bounds(), &image.Uniform{white}, image.Point{}, draw.Src)
	draw.Draw(dst, dst.Bounds(), img, img.Bounds().Min, draw.Over)

	return dst
}

func (p *ImageProcessor) resize(img image.Image, outputSize image.Point, maxImageTiles int) (image.Image, image.Point) {
	b := img.Bounds()
	tileSize := outputSize.Y

	canvasSize := p.optimalTiledCanvas(b.Max, maxImageTiles, tileSize)
	aspectRatio := image.Point{canvasSize.X / tileSize, canvasSize.Y / tileSize}
	newSize := p.fitToCanvas(b.Max, canvasSize, tileSize)

	dst := image.NewRGBA(image.Rect(0, 0, newSize.X, newSize.Y))

	// scaling choices:
	//   NearestNeighbor	fast, blocky output
	//   ApproxBiLinear	fast, medium quality
	//   BiLinear		slow, high quality
	//   CatmullRom		very slow, very high quality
	draw.BiLinear.Scale(dst, dst.Rect, img, b, draw.Over, nil)

	return dst, aspectRatio
}

func (p *ImageProcessor) pad(img image.Image, outputSize, aspectRatio image.Point) image.Image {
	paddedSize := image.Point{
		X: outputSize.X * aspectRatio.X,
		Y: outputSize.Y * aspectRatio.Y,
	}

	dst := image.NewRGBA(image.Rect(0, 0, paddedSize.X, paddedSize.Y))
	draw.Draw(dst, img.Bounds(), img, image.Point{0, 0}, draw.Over)

	return dst
}

func (p *ImageProcessor) pack(img image.Image, aspectRatio image.Point, mean, std [3]float32) []float32 {
	subImages := p.splitToTiles(img, aspectRatio)

	var pixelVals []float32

	for _, subImg := range subImages {
		bounds := subImg.Bounds()
		var rVals, gVals, bVals []float32
		for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
			for x := bounds.Min.X; x < bounds.Max.X; x++ {
				c := subImg.At(x, y)
				r, g, b, _ := c.RGBA()
				rVal := float32(r>>8) / 255.0
				gVal := float32(g>>8) / 255.0
				bVal := float32(b>>8) / 255.0

				rVal = (rVal - mean[0]) / std[0]
				gVal = (gVal - mean[1]) / std[1]
				bVal = (bVal - mean[2]) / std[2]

				rVals = append(rVals, rVal)
				gVals = append(gVals, gVal)
				bVals = append(bVals, bVal)
			}
		}
		pixelVals = append(pixelVals, rVals...)
		pixelVals = append(pixelVals, gVals...)
		pixelVals = append(pixelVals, bVals...)
	}

	return pixelVals
}

func (p ImageProcessor) ProcessImage(img image.Image) ([]float32, int, error) {
	outputSize := image.Point{p.imageSize, p.imageSize}

	// clip values
	mean := [3]float32{0.48145466, 0.4578275, 0.40821073}
	std := [3]float32{0.26862954, 0.26130258, 0.27577711}

	newImage, aspectRatio := p.resize(img, outputSize, p.maxNumTiles)
	newImage = p.pad(newImage, outputSize, aspectRatio)

	data := p.pack(newImage, aspectRatio, mean, std)
	aspectRatioIndex := slices.Index(p.supportedAspectRatios(p.maxNumTiles), aspectRatio) + 1
	return data, aspectRatioIndex, nil
}