clip-model.h 10 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#pragma once

#include "ggml.h"
#include "clip.h"
#include "clip-impl.h"

#include <vector>
#include <unordered_set>
#include <cstdint>
#include <cmath>

enum ffn_op_type {
    FFN_GELU,
    FFN_GELU_ERF,
    FFN_SILU,
    FFN_GELU_QUICK,
};

enum norm_type {
    NORM_TYPE_NORMAL,
    NORM_TYPE_RMS,
};

enum patch_merge_type {
    PATCH_MERGE_FLAT,
    PATCH_MERGE_SPATIAL_UNPAD,
};

struct clip_hparams {
    int32_t image_size = 0;
    int32_t patch_size = 0;
    int32_t n_embd = 0;
    int32_t n_ff = 0;
    int32_t projection_dim = 0;
    int32_t n_head = 0;
    int32_t n_layer = 0;
    // idefics3
    int32_t image_longest_edge = 0;
    int32_t image_min_pixels = -1;
    int32_t image_max_pixels = -1;
    int32_t n_merge = 0; // number of patch merges **per-side**

    float image_mean[3];
    float image_std[3];

    // for models using dynamic image size, we need to have a smaller image size to warmup
    // otherwise, user will get OOM everytime they load the model
    int32_t warmup_image_size = 0;
    int32_t warmup_audio_size = 3000;

    ffn_op_type ffn_op = FFN_GELU;

    patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;

    float eps = 1e-6;
    float rope_theta = 0.0;

    std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
    int32_t image_crop_resolution;
    std::unordered_set<int32_t> vision_feature_layer;
    int32_t attn_window_size = 0;
    int32_t n_wa_pattern = 0;

    // audio
    int32_t n_mel_bins = 0; // whisper preprocessor
    int32_t proj_stack_factor = 0; // ultravox

    // audio-to-mel preprocessor params
    int32_t audio_chunk_len   = -1; // in seconds
    int32_t audio_sample_rate = -1;
    int32_t audio_n_fft       = -1;
    int32_t audio_window_len  = -1;
    int32_t audio_hop_len     = -1;

    // legacy
    bool has_llava_projector = false;
    int minicpmv_version = 0;
    int32_t minicpmv_query_num = 0;         // MiniCPM-V query number

    // custom value provided by user, can be undefined if not set
    int32_t custom_image_min_tokens = -1;
    int32_t custom_image_max_tokens = -1;

    void set_limit_image_tokens(int n_tokens_min, int n_tokens_max) {
        const int cur_merge = n_merge == 0 ? 1 : n_merge;
        const int patch_area = patch_size * patch_size * cur_merge * cur_merge;
        image_min_pixels = (custom_image_min_tokens > 0 ? custom_image_min_tokens : n_tokens_min) * patch_area;
        image_max_pixels = (custom_image_max_tokens > 0 ? custom_image_max_tokens : n_tokens_max) * patch_area;
        warmup_image_size = static_cast<int>(std::sqrt(image_max_pixels));
    }

    void set_warmup_n_tokens(int n_tokens) {
        int n_tok_per_side = static_cast<int>(std::sqrt(n_tokens));
        GGML_ASSERT(n_tok_per_side * n_tok_per_side == n_tokens && "n_tokens must be n*n");
        const int cur_merge = n_merge == 0 ? 1 : n_merge;
        warmup_image_size = n_tok_per_side * patch_size * cur_merge;
        // TODO: support warmup size for custom token numbers
    }
};

struct clip_layer {
    // attention
    ggml_tensor * k_w = nullptr;
    ggml_tensor * k_b = nullptr;
    ggml_tensor * q_w = nullptr;
    ggml_tensor * q_b = nullptr;
    ggml_tensor * v_w = nullptr;
    ggml_tensor * v_b = nullptr;
    ggml_tensor * qkv_w = nullptr;
    ggml_tensor * qkv_b = nullptr;

    ggml_tensor * o_w = nullptr;
    ggml_tensor * o_b = nullptr;

    ggml_tensor * k_norm = nullptr;
    ggml_tensor * q_norm = nullptr;

    // layernorm 1
    ggml_tensor * ln_1_w = nullptr;
    ggml_tensor * ln_1_b = nullptr;

    ggml_tensor * ff_up_w = nullptr;
    ggml_tensor * ff_up_b = nullptr;
    ggml_tensor * ff_gate_w = nullptr;
    ggml_tensor * ff_gate_b = nullptr;
    ggml_tensor * ff_down_w = nullptr;
    ggml_tensor * ff_down_b = nullptr;

    // layernorm 2
    ggml_tensor * ln_2_w = nullptr;
    ggml_tensor * ln_2_b = nullptr;

    // layer scale (no bias)
    ggml_tensor * ls_1_w = nullptr;
    ggml_tensor * ls_2_w = nullptr;

    // qwen3vl deepstack merger
    ggml_tensor * deepstack_norm_w = nullptr;
    ggml_tensor * deepstack_norm_b = nullptr;
    ggml_tensor * deepstack_fc1_w = nullptr;
    ggml_tensor * deepstack_fc1_b = nullptr;
    ggml_tensor * deepstack_fc2_w = nullptr;
    ggml_tensor * deepstack_fc2_b = nullptr;

    bool has_deepstack() const {
        return deepstack_fc1_w != nullptr;
    }
};

struct clip_model {
    clip_modality modality = CLIP_MODALITY_VISION;
    projector_type proj_type = PROJECTOR_TYPE_MLP;
    clip_hparams hparams;

    // embeddings
    ggml_tensor * class_embedding = nullptr;
    ggml_tensor * patch_embeddings_0 = nullptr;
    ggml_tensor * patch_embeddings_1 = nullptr;  // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
    ggml_tensor * patch_bias = nullptr;
    ggml_tensor * position_embeddings = nullptr;
    ggml_tensor * norm_embd_w = nullptr;
    ggml_tensor * norm_embd_b = nullptr;

    ggml_tensor * pre_ln_w = nullptr;
    ggml_tensor * pre_ln_b = nullptr;

    std::vector<clip_layer> layers;

    int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer

    ggml_tensor * post_ln_w;
    ggml_tensor * post_ln_b;

    ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
    ggml_tensor * mm_fc_w;
    ggml_tensor * mm_fc_b;
    ggml_tensor * mm_ffn_up_w = nullptr;
    ggml_tensor * mm_ffn_up_b = nullptr;
    ggml_tensor * mm_ffn_gate_w = nullptr;
    ggml_tensor * mm_ffn_gate_b = nullptr;
    ggml_tensor * mm_ffn_down_w = nullptr;
    ggml_tensor * mm_ffn_down_b = nullptr;
    ggml_tensor * mm_post_norm_w = nullptr;
    ggml_tensor * mm_post_norm_b = nullptr;

    // LLaVA projection
    ggml_tensor * mm_input_norm_w = nullptr;
    ggml_tensor * mm_input_norm_b = nullptr;
    ggml_tensor * mm_0_w = nullptr;
    ggml_tensor * mm_0_b = nullptr;
    ggml_tensor * mm_2_w = nullptr;
    ggml_tensor * mm_2_b = nullptr;

    ggml_tensor * image_newline = nullptr;

    // Yi type models with mlp+normalization projection
    ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
    ggml_tensor * mm_1_b = nullptr;
    ggml_tensor * mm_3_w = nullptr;
    ggml_tensor * mm_3_b = nullptr;
    ggml_tensor * mm_4_w = nullptr;
    ggml_tensor * mm_4_b = nullptr;

    // GLMV-Edge projection
    ggml_tensor * mm_model_adapter_conv_w = nullptr;
    ggml_tensor * mm_model_adapter_conv_b = nullptr;

    // MobileVLM projection
    ggml_tensor * mm_model_mlp_1_w = nullptr;
    ggml_tensor * mm_model_mlp_1_b = nullptr;
    ggml_tensor * mm_model_mlp_3_w = nullptr;
    ggml_tensor * mm_model_mlp_3_b = nullptr;
    ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;

    // MobileVLM_V2 projection
    ggml_tensor * mm_model_mlp_0_w = nullptr;
    ggml_tensor * mm_model_mlp_0_b = nullptr;
    ggml_tensor * mm_model_mlp_2_w = nullptr;
    ggml_tensor * mm_model_mlp_2_b = nullptr;
    ggml_tensor * mm_model_peg_0_w = nullptr;
    ggml_tensor * mm_model_peg_0_b = nullptr;

    // MINICPMV projection
    ggml_tensor * mm_model_pos_embed_k = nullptr;
    ggml_tensor * mm_model_query = nullptr;
    ggml_tensor * mm_model_proj = nullptr;
    ggml_tensor * mm_model_kv_proj = nullptr;
    ggml_tensor * mm_model_attn_q_w = nullptr;
    ggml_tensor * mm_model_attn_q_b = nullptr;
    ggml_tensor * mm_model_attn_k_w = nullptr;
    ggml_tensor * mm_model_attn_k_b = nullptr;
    ggml_tensor * mm_model_attn_v_w = nullptr;
    ggml_tensor * mm_model_attn_v_b = nullptr;
    ggml_tensor * mm_model_attn_o_w = nullptr;
    ggml_tensor * mm_model_attn_o_b = nullptr;
    ggml_tensor * mm_model_ln_q_w = nullptr;
    ggml_tensor * mm_model_ln_q_b = nullptr;
    ggml_tensor * mm_model_ln_kv_w = nullptr;
    ggml_tensor * mm_model_ln_kv_b = nullptr;
    ggml_tensor * mm_model_ln_post_w = nullptr;
    ggml_tensor * mm_model_ln_post_b = nullptr;

    // gemma3
    ggml_tensor * mm_input_proj_w = nullptr;
    ggml_tensor * mm_soft_emb_norm_w = nullptr;

    // pixtral, glm4v
    ggml_tensor * token_embd_img_break = nullptr;
    ggml_tensor * mm_patch_merger_w = nullptr;
    ggml_tensor * mm_patch_merger_b = nullptr;

    // ultravox / whisper encoder
    ggml_tensor * conv1d_1_w = nullptr;
    ggml_tensor * conv1d_1_b = nullptr;
    ggml_tensor * conv1d_2_w = nullptr;
    ggml_tensor * conv1d_2_b = nullptr;
    ggml_tensor * mm_norm_pre_w = nullptr;
    ggml_tensor * mm_norm_pre_b = nullptr;
    ggml_tensor * mm_norm_mid_w = nullptr;

    // cogvlm
    ggml_tensor * mm_post_fc_norm_w = nullptr;
    ggml_tensor * mm_post_fc_norm_b = nullptr;
    ggml_tensor * mm_h_to_4h_w = nullptr;
    ggml_tensor * mm_gate_w = nullptr;
    ggml_tensor * mm_4h_to_h_w = nullptr;
    ggml_tensor * mm_boi = nullptr;
    ggml_tensor * mm_eoi = nullptr;

    bool audio_has_avgpool() const {
        return proj_type == PROJECTOR_TYPE_QWEN2A
            || proj_type == PROJECTOR_TYPE_VOXTRAL;
    }

    bool audio_has_stack_frames() const {
        return proj_type == PROJECTOR_TYPE_ULTRAVOX
            || proj_type == PROJECTOR_TYPE_VOXTRAL;
    }
};

const clip_hparams * clip_get_hparams(const struct clip_ctx * ctx);