qwen2.cpp 4.02 KB
Newer Older
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include "models.h"

llm_build_qwen2::llm_build_qwen2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
    const int64_t n_embd_head = hparams.n_embd_head_v;

    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
    GGML_ASSERT(n_embd_head == hparams.n_rot);

    ggml_tensor * cur;
    ggml_tensor * inpL;

    inpL = build_inp_embd(model.tok_embd);

    // inp_pos - contains the positions
    ggml_tensor * inp_pos = build_inp_pos();

    auto * inp_attn = build_attn_inp_kv();

    ggml_tensor * inp_out_ids = build_inp_out_ids();

    for (int il = 0; il < n_layer; ++il) {
        ggml_tensor * inpSA = inpL;

        // norm
        cur = build_norm(inpL,
                model.layers[il].attn_norm, NULL,
                LLM_NORM_RMS, il);
        cb(cur, "attn_norm", il);

        // self-attention
        {
            // compute Q and K and RoPE them
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
            cb(Qcur, "Qcur", il);
35
36
37
38
            if (model.layers[il].bq) {
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                cb(Qcur, "Qcur", il);
            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
39
40
41

            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
            cb(Kcur, "Kcur", il);
42
43
44
45
            if (model.layers[il].bk) {
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                cb(Kcur, "Kcur", il);
            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
46
47
48

            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
            cb(Vcur, "Vcur", il);
49
50
51
52
            if (model.layers[il].bv) {
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                cb(Vcur, "Vcur", il);
            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);

            Qcur = ggml_rope_ext(
                    ctx0, Qcur, inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                    );

            Kcur = ggml_rope_ext(
                    ctx0, Kcur, inp_pos, nullptr,
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                    ext_factor, attn_factor, beta_fast, beta_slow
                    );

            cb(Qcur, "Qcur", il);
            cb(Kcur, "Kcur", il);
            cb(Vcur, "Vcur", il);

            cur = build_attn(inp_attn,
                    model.layers[il].wo, model.layers[il].bo,
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
        }
        if (il == n_layer - 1 && inp_out_ids) {
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
        }
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
        cb(ffn_inp, "ffn_inp", il);

        // feed-forward network
        cur = build_norm(ffn_inp,
                model.layers[il].ffn_norm, NULL,
                LLM_NORM_RMS, il);
        cb(cur, "ffn_norm", il);

        cur = build_ffn(cur,
                model.layers[il].ffn_up,   NULL, NULL,
                model.layers[il].ffn_gate, NULL, NULL,
                model.layers[il].ffn_down, NULL, NULL,
                NULL,
                LLM_FFN_SILU, LLM_FFN_PAR, il);
        cb(cur, "ffn_out", il);

        cur = ggml_add(ctx0, cur, ffn_inp);

        cur = build_cvec(cur, il);
        cb(cur, "l_out", il);

        // input for next layer
        inpL = cur;
    }
    cur = inpL;

    cur = build_norm(cur,
            model.output_norm, NULL,
            LLM_NORM_RMS, -1);

    cb(cur, "result_norm", -1);
    res->t_embd = cur;

    // lm_head
    cur = build_lora_mm(model.output, cur);

    if (model.output_b != nullptr) {
        cur = ggml_add(ctx0, cur, model.output_b);
    }
    cb(cur, "result_output", -1);
    res->t_logits = cur;

    ggml_build_forward_expand(gf, cur);
}