glm4.cpp 5.99 KB
Newer Older
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1
2
3
4
5
6
7
8
9
10
#include "models.h"



llm_build_glm4::llm_build_glm4(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
    const int64_t n_embd_head = hparams.n_embd_head_v;
    const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();

    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

11
12
13
    int sections[4];
    std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
14
15
16
17
18
    ggml_tensor * cur;
    ggml_tensor * inpL;

    inpL = build_inp_embd(model.tok_embd);

19
20
21
22
23
24
    bool use_mrope = hparams.use_mrope();
    if (ubatch.embd && !use_mrope) {
        // unfortunately, we need to forcefully stop here, to avoid users complaining about wrong results
        GGML_ABORT("This GGUF does not support multimodal. Please reconvert it.");
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    // inp_pos - contains the positions
    ggml_tensor * inp_pos = build_inp_pos();

    auto * inp_attn = build_attn_inp_kv();

    ggml_tensor * inp_out_ids = build_inp_out_ids();

    for (int il = 0; il < n_layer; ++il) {
        ggml_tensor * inpSA = inpL;

        // Pre-attention norm
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
        cb(cur, "attn_norm", il);

        // self-attention
        {
            ggml_tensor * Qcur = nullptr;
            ggml_tensor * Kcur = nullptr;
            ggml_tensor * Vcur = nullptr;

            if (model.layers[il].wqkv == nullptr) {
                Qcur = build_lora_mm(model.layers[il].wq, cur);
                if (model.layers[il].bq) {
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
                }
                Kcur = build_lora_mm(model.layers[il].wk, cur);
                if (model.layers[il].bk) {
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
                }
                Vcur = build_lora_mm(model.layers[il].wv, cur);
                if (model.layers[il].bv) {
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
                }
                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
            } else {
                cur = build_lora_mm(model.layers[il].wqkv, cur);
                cb(cur, "wqkv", il);
                if (model.layers[il].bqkv) {
                    cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
                    cb(cur, "bqkv", il);
                }
                Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1],
                                    0 * sizeof(float) * (n_embd));
                Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
                                    cur->nb[1], 1 * sizeof(float) * (n_embd));
                Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
                                    cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
            }

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
            if (use_mrope) {
                Qcur = ggml_rope_multi(ctx0, Qcur, inp_pos, nullptr,
                            n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
                            ext_factor, attn_factor, beta_fast, beta_slow);

                Kcur = ggml_rope_multi(ctx0, Kcur, inp_pos, nullptr,
                            n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
                            ext_factor, attn_factor, beta_fast, beta_slow);
            } else {
                // Normal RoPE
                Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot,
                                    rope_type, n_ctx_orig, freq_base, freq_scale,
                                    ext_factor, attn_factor, beta_fast, beta_slow);

                Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot,
                                    rope_type, n_ctx_orig, freq_base, freq_scale,
                                    ext_factor, attn_factor, beta_fast, beta_slow);
            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

            cb(Qcur, "Qcur", il);
            cb(Kcur, "Kcur", il);
            cb(Vcur, "Vcur", il);

            cur = build_attn(inp_attn,
                    model.layers[il].wo, NULL,
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
        }
        if (il == n_layer - 1 && inp_out_ids) {
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
        }
        // Post-attention norm (new!)
        cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
        cb(cur, "post_attn_norm", il);

        // Add the input (residual connection after post-attention norm)
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
        cb(ffn_inp, "ffn_inp", il);

        // FF
        {
            // Pre-MLP norm
            cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
            cb(cur, "ffn_norm", il);

            // MLP
            cur = build_ffn(cur,
                    model.layers[il].ffn_up, NULL, NULL,
                    NULL, NULL, NULL,
                    model.layers[il].ffn_down, NULL, NULL,
                    NULL, LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
            cb(cur, "ffn_out", il);

            // Post-MLP norm
            cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il);
            cb(cur, "post_mlp_norm", il);
        }
        // Add residual connection after post-MLP norm
        inpL = ggml_add(ctx0, cur, ffn_inp);
        cb(inpL, "l_out", il);
    }
    // Final norm
    cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);

    cb(cur, "result_norm", -1);
    res->t_embd = cur;

    // Output projection
    cur = build_lora_mm(model.output, cur);

    cb(cur, "result_output", -1);
    res->t_logits = cur;

    ggml_build_forward_expand(gf, cur);
}