llama-kv-cache.cpp 68.7 KB
Newer Older
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1
#include "llama-kv-cache.h"
2
3
4
5
6
7
8
9
10

#include "llama-impl.h"
#include "llama-io.h"
#include "llama-model.h"
#include "llama-context.h"

#include <algorithm>
#include <cassert>
#include <cmath>
Daniel Hiltgen's avatar
Daniel Hiltgen committed
11
#include <cstring>
12
13
14
15
16
#include <limits>
#include <map>
#include <stdexcept>

//
Daniel Hiltgen's avatar
Daniel Hiltgen committed
17
// llama_kv_cache
18
19
//

Daniel Hiltgen's avatar
Daniel Hiltgen committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
llama_kv_cache::llama_kv_cache(
        const llama_model & model,
                ggml_type   type_k,
                ggml_type   type_v,
                     bool   v_trans,
                     bool   offload,
                     bool   unified,
                 uint32_t   kv_size,
                 uint32_t   n_seq_max,
                 uint32_t   n_pad,
                 uint32_t   n_swa,
           llama_swa_type   swa_type,
    const layer_filter_cb & filter,
    const  layer_reuse_cb & reuse) :
34
35
36
37
38
    model(model), hparams(model.hparams), v_trans(v_trans),
    n_seq_max(n_seq_max), n_stream(unified ? 1 : n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) {

    GGML_ASSERT(kv_size % n_pad == 0);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
39
    const uint32_t n_layer_kv = hparams.n_layer_kv();
40

Daniel Hiltgen's avatar
Daniel Hiltgen committed
41
42
43
44
45
46
47
48
    // define a comparator for the buft -> ctx map to ensure that the order is well-defined:
    struct ggml_backend_buft_comparator {
        bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
            return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
        }
    };
    std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;

49
50
51
52
53
    // create a context for each buffer type
    auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
        auto it = ctx_map.find(buft);
        if (it == ctx_map.end()) {
            ggml_init_params params = {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
54
                /*.mem_size   =*/ size_t(2u*(1 + n_stream)*n_layer_kv*ggml_tensor_overhead()),
55
56
57
58
59
60
61
62
63
                /*.mem_buffer =*/ NULL,
                /*.no_alloc   =*/ true,
            };

            ggml_context * ctx = ggml_init(params);
            if (!ctx) {
                return nullptr;
            }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
64
            ctx_map.emplace(buft, ctx);
65
66
67
68

            return ctx;
        }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
69
        return it->second.get();
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    };

    GGML_ASSERT(n_stream == 1 || n_stream == n_seq_max);

    v_heads.resize(n_stream);
    for (uint32_t s = 0; s < n_stream; ++s) {
        v_heads[s] = 0;
    }

    v_cells.resize(n_stream);
    for (uint32_t s = 0; s < n_stream; ++s) {
        v_cells[s].resize(kv_size);
    }

    // by default, all sequence ids are mapped to the 0th stream
    seq_to_stream.resize(LLAMA_MAX_SEQ, 0);

    if (n_stream > 1) {
        seq_to_stream.resize(n_stream, 0);
        for (uint32_t s = 0; s < n_stream; ++s) {
            seq_to_stream[s] = s;
        }
    }

    // [TAG_V_CACHE_VARIABLE]
    if (v_trans && hparams.is_n_embd_v_gqa_variable()) {
        LLAMA_LOG_WARN("%s: the V embeddings have different sizes across layers and FA is not enabled - padding V cache to %d\n",
                __func__, hparams.n_embd_v_gqa_max());
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
100
101
102
103
104
105
    for (uint32_t il = 0; il < hparams.n_layer; il++) {
        if (!hparams.has_kv(il)) {
            LLAMA_LOG_DEBUG("%s: layer %3d: does not have KV cache\n", __func__, il);
            continue;
        }

106
        if (filter && !filter(il)) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
107
            LLAMA_LOG_DEBUG("%s: layer %3d: filtered\n", __func__, il);
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
            continue;
        }

        // [TAG_V_CACHE_VARIABLE]
        const uint32_t n_embd_k_gqa =            hparams.n_embd_k_gqa(il);
        const uint32_t n_embd_v_gqa = !v_trans ? hparams.n_embd_v_gqa(il) : hparams.n_embd_v_gqa_max();

        const char * dev_name = "CPU";

        ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();

        if (offload) {
            auto * dev = model.dev_layer(il);
            buft = ggml_backend_dev_buffer_type(dev);

            dev_name = ggml_backend_dev_name(dev);
        }

        LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name);

        ggml_context * ctx = ctx_for_buft(buft);
        if (!ctx) {
            throw std::runtime_error("failed to create ggml context for kv cache");
        }

133
134
        ggml_tensor * k = ggml_new_tensor_3d(ctx, type_k, n_embd_k_gqa, kv_size, n_stream);
        ggml_tensor * v = ggml_new_tensor_3d(ctx, type_v, n_embd_v_gqa, kv_size, n_stream);
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

        ggml_format_name(k, "cache_k_l%d", il);
        ggml_format_name(v, "cache_v_l%d", il);

        std::vector<ggml_tensor *> k_stream;
        std::vector<ggml_tensor *> v_stream;

        for (uint32_t s = 0; s < n_stream; ++s) {
            k_stream.push_back(ggml_view_2d(ctx, k, n_embd_k_gqa, kv_size, k->nb[1], s*k->nb[2]));
            v_stream.push_back(ggml_view_2d(ctx, v, n_embd_v_gqa, kv_size, v->nb[1], s*v->nb[2]));
        }

        map_layer_ids[il] = layers.size();

        layers.push_back({ il, k, v, k_stream, v_stream, });
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
152
153
    if (reuse) {
        LLAMA_LOG_DEBUG("%s: reusing layers:\n", __func__);
154

Daniel Hiltgen's avatar
Daniel Hiltgen committed
155
156
157
158
159
        for (uint32_t il = 0; il < hparams.n_layer; il++) {
            const int32_t il_reuse = reuse(il);

            if (il_reuse < 0) {
                LLAMA_LOG_DEBUG("%s: - layer %3d: no reuse\n", __func__, il);
160
161
162
                continue;
            }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
163
164
165
166
            if (filter && !filter(il)) {
                LLAMA_LOG_DEBUG("%s: - layer %3d: filtered\n", __func__, il);
                continue;
            }
167
168

            GGML_ASSERT(map_layer_ids.find(il_reuse) != map_layer_ids.end());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
169

170
171
            map_layer_ids[il] = map_layer_ids[il_reuse];

Daniel Hiltgen's avatar
Daniel Hiltgen committed
172
            LLAMA_LOG_DEBUG("%s: - layer %3d: reuse layer %d, is_swa = %d\n", __func__, il, il_reuse, hparams.is_swa(il));
173
174
175
176
        }
    }

    // allocate tensors and initialize the buffers to avoid NaNs in the padding
Daniel Hiltgen's avatar
Daniel Hiltgen committed
177
    for (auto & [buft, ctx] : ctx_map) {
178
179
180
181
182
183
184
185
186
        ggml_backend_buffer_t buf;
        if (model.hparams.no_alloc) {
            buf = ggml_backend_buft_alloc_buffer(buft, /*size =*/ 0); // dummy buffer
            for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
                t->buffer = buf; // set dummy buffer for KV cache so that the backend scheduler won't try to allocate it
            }
        } else {
            buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft); // real buffer
        }
187
188
189
190
191
192
193
        if (!buf) {
            throw std::runtime_error("failed to allocate buffer for kv cache");
        }

        LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);

        ggml_backend_buffer_clear(buf, 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
194
        ctxs_bufs.emplace_back(std::move(ctx), buf);
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    }

    {
        const size_t memory_size_k = size_k_bytes();
        const size_t memory_size_v = size_v_bytes();

        LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u/%u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
                (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max, n_stream,
                ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
                ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
    }

    const char * LLAMA_KV_CACHE_DEBUG = getenv("LLAMA_KV_CACHE_DEBUG");
    debug = LLAMA_KV_CACHE_DEBUG ? atoi(LLAMA_KV_CACHE_DEBUG) : 0;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
211
void llama_kv_cache::clear(bool data) {
212
213
214
215
216
217
    for (uint32_t s = 0; s < n_stream; ++s) {
        v_cells[s].reset();
        v_heads[s] = 0;
    }

    if (data) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
218
        for (auto & [_, buf] : ctxs_bufs) {
219
220
221
222
223
            ggml_backend_buffer_clear(buf.get(), 0);
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
224
225
bool llama_kv_cache::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
    GGML_ASSERT(seq_id == -1 || (seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()));
226
227
228
229
230
231
232
233
234
235

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    if (seq_id >= 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
236
237
238
239
240
        auto & cells = v_cells[seq_to_stream[seq_id]];
        auto & head  = v_heads[seq_to_stream[seq_id]];

        uint32_t new_head = cells.size();

241
242
243
244
245
246
247
248
249
250
251
        for (uint32_t i = 0; i < cells.size(); ++i) {
            if (!cells.pos_in(i, p0, p1)) {
                continue;
            }

            if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) {
                if (new_head == cells.size()) {
                    new_head = i;
                }
            }
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
252
253
254
255
256

        // If we freed up a slot, set head to it so searching can start there.
        if (new_head != cells.size() && new_head < head) {
            head = new_head;
        }
257
258
    } else {
        // match any sequence
Daniel Hiltgen's avatar
Daniel Hiltgen committed
259
260
261
        for (uint32_t s = 0; s < n_stream; ++s) {
            auto & cells = v_cells[s];
            auto & head  = v_heads[s];
262

Daniel Hiltgen's avatar
Daniel Hiltgen committed
263
            uint32_t new_head = cells.size();
264

Daniel Hiltgen's avatar
Daniel Hiltgen committed
265
266
267
268
269
270
271
272
273
274
            for (uint32_t i = 0; i < cells.size(); ++i) {
                if (!cells.pos_in(i, p0, p1)) {
                    continue;
                }

                cells.rm(i);

                if (new_head == cells.size()) {
                    new_head = i;
                }
275
276
            }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
277
278
279
280
281
            // If we freed up a slot, set head to it so searching can start there.
            if (new_head != cells.size() && new_head < head) {
                head = new_head;
            }
        }
282
283
284
285
286
    }

    return true;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
287
void llama_kv_cache::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    GGML_ASSERT(seq_id_src >= 0 && (size_t) seq_id_src < seq_to_stream.size());
    GGML_ASSERT(seq_id_dst >= 0 && (size_t) seq_id_dst < seq_to_stream.size());

    const auto s0 = seq_to_stream[seq_id_src];
    const auto s1 = seq_to_stream[seq_id_dst];

    if (s0 == s1) {
        // since both sequences are in the same stream, no data copy is necessary
        // we just have to update the cells meta data

        auto & cells = v_cells[s0];

        if (seq_id_src == seq_id_dst) {
            return;
        }

        if (p0 < 0) {
            p0 = 0;
        }

        if (p1 < 0) {
            p1 = std::numeric_limits<llama_pos>::max();
        }

        for (uint32_t i = 0; i < cells.size(); ++i) {
            if (!cells.pos_in(i, p0, p1)) {
                continue;
            }

            if (cells.seq_has(i, seq_id_src)) {
                cells.seq_add(i, seq_id_dst);
            }
        }

        return;
    }

    // cross-stream sequence copies require to copy the actual buffer data

    bool is_full = true;

    if (p0 > 0 && p0 + 1 < (int) get_size()) {
        is_full = false;
    }

    if (p1 > 0 && p1 + 1 < (int) get_size()) {
        is_full = false;
    }

    GGML_ASSERT(is_full && "seq_cp() is only supported for full KV buffers");

    // enqueue the copy operation - the buffer copy will be performed during the next update
    sc_info.ssrc.push_back(s0);
    sc_info.sdst.push_back(s1);

    v_cells[s1].reset();
    for (uint32_t i = 0; i < v_cells[s0].size(); ++i) {
        if (v_cells[s0].seq_has(i, seq_id_src)) {
            llama_pos pos   = v_cells[s0].pos_get(i);
            llama_pos shift = v_cells[s0].get_shift(i);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
349
350
            llama_kv_cell_ext ext = v_cells[s0].ext_get(i);

351
352
353
354
355
356
357
358
359
360
361
            if (shift != 0) {
                pos -= shift;
                assert(pos >= 0);
            }

            v_cells[s1].pos_set(i, pos);
            v_cells[s1].seq_add(i, seq_id_dst);

            if (shift != 0) {
                v_cells[s1].pos_add(i, shift);
            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
362
363

            v_cells[s1].ext_set(i, ext);
364
365
366
367
368
369
370
371
372
373
        }
    }

    v_heads[s1] = v_heads[s0];

    //for (uint32_t s = 0; s < n_stream; ++s) {
    //    LLAMA_LOG_WARN("%s: seq %d: min = %d, max = %d\n", __func__, s, v_cells[s].seq_pos_min(s), v_cells[s].seq_pos_max(s));
    //}
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
374
void llama_kv_cache::seq_keep(llama_seq_id seq_id) {
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());

    auto & cells = v_cells[seq_to_stream[seq_id]];
    auto & head  = v_heads[seq_to_stream[seq_id]];

    uint32_t new_head = cells.size();

    for (uint32_t i = 0; i < cells.size(); ++i) {
        if (cells.seq_keep(i, seq_id)) {
            if (new_head == cells.size()) {
                new_head = i;
            }
        }
    }

    // If we freed up a slot, set head to it so searching can start there.
    if (new_head != cells.size() && new_head < head) {
        head = new_head;
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
396
void llama_kv_cache::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
397
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
398
    GGML_ASSERT(hparams.n_pos_per_embd() == 1 && "seq_add() is only supported for n_pos_per_embd() == 1");
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

    auto & cells = v_cells[seq_to_stream[seq_id]];
    auto & head  = v_heads[seq_to_stream[seq_id]];

    if (shift == 0) {
        return;
    }

    uint32_t new_head = cells.size();

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    // If there is no range then return early to avoid looping over all cells.
    if (p0 == p1) {
        return;
    }

    for (uint32_t i = 0; i < cells.size(); ++i) {
        if (!cells.pos_in(i, p0, p1)) {
            continue;
        }

        if (cells.seq_has(i, seq_id)) {
            if (cells.pos_add(i, shift)) {
                if (new_head == cells.size()) {
                    new_head = i;
                }
            }
        }
    }

    // If we freed up a slot, set head to it so searching can start there.
    // Otherwise we just start the next search from the beginning.
    head = new_head != cells.size() ? new_head : 0;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
441
void llama_kv_cache::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
442
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
443
    GGML_ASSERT(hparams.n_pos_per_embd() == 1 && "seq_div() is only supported for n_pos_per_embd() == 1");
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

    auto & cells = v_cells[seq_to_stream[seq_id]];

    if (d == 1) {
        return;
    }

    if (p0 < 0) {
        p0 = 0;
    }

    if (p1 < 0) {
        p1 = std::numeric_limits<llama_pos>::max();
    }

    // If there is no range then return early to avoid looping over the cache.
    if (p0 == p1) {
        return;
    }

    for (uint32_t i = 0; i < cells.size(); ++i) {
        if (!cells.pos_in(i, p0, p1)) {
            continue;
        }

        if (cells.seq_has(i, seq_id)) {
            cells.pos_div(i, d);
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
475
llama_pos llama_kv_cache::seq_pos_min(llama_seq_id seq_id) const {
476
477
478
479
480
481
482
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());

    const auto & cells = v_cells[seq_to_stream[seq_id]];

    return cells.seq_pos_min(seq_id);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
483
llama_pos llama_kv_cache::seq_pos_max(llama_seq_id seq_id) const {
484
485
486
487
488
489
490
    GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());

    const auto & cells = v_cells[seq_to_stream[seq_id]];

    return cells.seq_pos_max(seq_id);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
491
492
std::map<ggml_backend_buffer_type_t, size_t> llama_kv_cache::memory_breakdown() const {
    std::map<ggml_backend_buffer_type_t, size_t> ret;
493
494
495
496
497
498
499
500
501
502
    for (const auto & [ctx, buf] : ctxs_bufs) {
        ggml_backend_buffer_type_t buft = ggml_backend_buffer_get_type(buf.get());

        if (hparams.no_alloc) {
            GGML_ASSERT(ggml_backend_buffer_get_base(buf.get()) == nullptr);
            ret[buft] += ggml_backend_alloc_ctx_tensors_from_buft_size(ctx.get(), buft);
        } else {
            // GGML_ASSERT(ggml_backend_buffer_get_base(buf.get()) != nullptr); // multi_buffer does not have a defined base
            ret[buft] += ggml_backend_buffer_get_size(buf.get());
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
503
    }
504

Daniel Hiltgen's avatar
Daniel Hiltgen committed
505
506
507
508
    return ret;
}

llama_memory_context_ptr llama_kv_cache::init_batch(
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
            llama_batch_allocr & balloc,
            uint32_t n_ubatch,
            bool embd_all) {
    GGML_UNUSED(embd_all);

    do {
        balloc.split_reset();

        std::vector<llama_ubatch> ubatches;
        while (true) {
            auto ubatch = n_stream == 1 ? balloc.split_simple(n_ubatch) : balloc.split_equal(n_ubatch, true);

            if (ubatch.n_tokens == 0) {
                break;
            }

            ubatches.push_back(std::move(ubatch)); // NOLINT
        }

        if (balloc.get_n_used() < balloc.get_n_tokens()) {
            // failed to find a suitable split
            break;
        }

        auto sinfos = prepare(ubatches);
        if (sinfos.empty()) {
            break;
        }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
538
        return std::make_unique<llama_kv_cache_context>(
539
540
541
                this, std::move(sinfos), std::move(ubatches));
    } while (false);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
542
    return std::make_unique<llama_kv_cache_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
543
544
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
545
546
llama_memory_context_ptr llama_kv_cache::init_full() {
    return std::make_unique<llama_kv_cache_context>(this);
547
548
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
549
550
llama_memory_context_ptr llama_kv_cache::init_update(llama_context * lctx, bool optimize) {
    GGML_UNUSED(optimize);
551

Daniel Hiltgen's avatar
Daniel Hiltgen committed
552
    bool do_shift = get_has_shift();
553

Daniel Hiltgen's avatar
Daniel Hiltgen committed
554
    return std::make_unique<llama_kv_cache_context>(this, lctx, do_shift, std::move(sc_info));
555
556
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
557
558
llama_kv_cache::slot_info_vec_t llama_kv_cache::prepare(const std::vector<llama_ubatch> & ubatches) {
    llama_kv_cache::slot_info_vec_t res;
559
560
561
562
563
564

    struct state_t {
        slot_info sinfo; // slot info for the ubatch

        std::vector<uint32_t> v_heads_old; // old positions of the heads, before placing the ubatch

Daniel Hiltgen's avatar
Daniel Hiltgen committed
565
        std::vector<llama_kv_cells> v_cells; // copy of the old cells, before placing the ubatch
566
567
568
569
570
571
572
573
574
    };

    // remember the old state of the cells so we can restore it in the end
    std::vector<state_t> states;

    bool success = true;

    for (const auto & ubatch : ubatches) {
        // only find a suitable slot for the ubatch. don't modify the cells yet
Daniel Hiltgen's avatar
Daniel Hiltgen committed
575
        const auto sinfo_new = find_slot(ubatch, false);
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
        if (sinfo_new.empty()) {
            success = false;
            break;
        }

        // remeber the position that we found
        res.push_back(sinfo_new);

        // store the old state of the cells in the recovery stack
        {
            state_t state = { sinfo_new, v_heads, {} };

            for (uint32_t s = 0; s < sinfo_new.n_stream(); ++s) {
                auto & cells = v_cells[sinfo_new.strm[s]];

                state.v_cells.push_back(cells.cp(sinfo_new.idxs[s]));
            }

            states.push_back(std::move(state));
        }

        // now emplace the ubatch
        apply_ubatch(sinfo_new, ubatch);
    }

    GGML_ASSERT(!states.empty() || !success);

    // iterate backwards and restore the cells to their original state
    for (auto it = states.rbegin(); it != states.rend(); ++it) {
        const auto & sinfo = it->sinfo;

        for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
            auto & cells = v_cells[sinfo.strm[s]];
            auto & head  = v_heads[sinfo.strm[s]];

            cells.set(sinfo.idxs[s], it->v_cells[s]);
            head = it->v_heads_old[s];
        }
    }

    if (!success) {
        return {};
    }

    return res;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
623
bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const stream_copy_info & sc_info) {
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
    bool updated = false;

    auto * sched = lctx->get_sched();

    if (!sc_info.empty()) {
        assert(n_stream > 1 && "stream copy should never happen with a single stream");

        llama_synchronize(lctx);

        const size_t n_copy = sc_info.ssrc.size();

        for (size_t i = 0; i < n_copy; ++i) {
            const auto ssrc = sc_info.ssrc[i];
            const auto sdst = sc_info.sdst[i];

            assert(ssrc < n_stream);
            assert(sdst < n_stream);

            LLAMA_LOG_DEBUG("%s: copying KV buffer: stream %d to stream %d\n", __func__, ssrc, sdst);

            assert(ssrc != sdst);

            for (uint32_t il = 0; il < layers.size(); ++il) {
                const auto & layer = layers[il];

                ggml_backend_tensor_copy(layer.k_stream[ssrc], layer.k_stream[sdst]);
                ggml_backend_tensor_copy(layer.v_stream[ssrc], layer.v_stream[sdst]);
            }
        }
    }

    if (do_shift) {
        if (!get_can_shift()) {
            GGML_ABORT("The current KV cache / model configuration does not support K-shift");
        }

        LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);

        // apply K-shift if needed
        if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
            ggml_backend_sched_reset(sched);

            auto * res = lctx->get_gf_res_reserve();

            res->reset();

            auto * gf = build_graph_shift(res, lctx);
            if (!ggml_backend_sched_alloc_graph(sched, gf)) {
                LLAMA_LOG_ERROR("%s: failed to allocate compute graph for K-shift\n", __func__);
                return updated;
            }

            res->set_inputs(nullptr);

            if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) {
                LLAMA_LOG_ERROR("%s: failed to compute K-shift\n", __func__);
                return updated;
            }

            updated = true;
        }

        for (uint32_t s = 0; s < n_stream; ++s) {
            auto & cells = v_cells[s];

            cells.reset_shift();
        }
    }

    return updated;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
696
llama_kv_cache::slot_info llama_kv_cache::find_slot(const llama_ubatch & ubatch, bool cont) const {
697

Daniel Hiltgen's avatar
Daniel Hiltgen committed
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
    if (debug > 0) {
        for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
            const auto seq_id = ubatch.seq_id_unq[s];
            const auto stream_id = seq_to_stream[seq_id];
            const auto & cells = v_cells[stream_id];
            const uint32_t head_cur = v_heads[stream_id];

            LLAMA_LOG_DEBUG("%s: stream[%d], n = %5d, used = %5d, head = %5d, size = %5d, n_swa = %5d\n",
                    __func__, stream_id, cells.used_max_p1(), cells.get_used(), head_cur, get_size(), n_swa);

            if ((debug == 2 && n_swa > 0) || debug > 2) {
                std::string ss;
                for (uint32_t i = 0; i < cells.size(); ++i) {
                    if (cells.is_empty(i)) {
                        ss += '.';
                    } else {
                        assert(cells.seq_count(i) >= 1);
715

Daniel Hiltgen's avatar
Daniel Hiltgen committed
716
717
718
719
720
721
722
723
724
725
726
727
728
                        if (cells.seq_count(i) == 1) {
                            ss += std::to_string(cells.seq_get(i));
                        } else {
                            ss += 'M';
                        }
                    }
                    if (i%256 == 255) {
                        ss += " *";
                        ss += '\n';
                    }
                }
                LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
            }
729

Daniel Hiltgen's avatar
Daniel Hiltgen committed
730
731
732
733
734
735
            if ((debug == 2 && n_swa > 0) || debug > 2) {
                std::string ss;
                for (uint32_t i = 0; i < cells.size(); ++i) {
                    std::string cur;
                    if (cells.is_empty(i)) {
                        cur = '.';
736
                    } else {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
737
738
739
740
741
742
743
744
745
746
747
748
                        cur = std::to_string(cells.pos_get(i));
                    }
                    const int n = cur.size();
                    for (int j = 0; j < 5 - n; ++j) {
                        cur += ' ';
                    }
                    ss += cur;
                    if (i%256 == 255) {
                        ss += " *";
                    }
                    if (i%64 == 63) {
                        ss += '\n';
749
750
                    }
                }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
751
                LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
752
753
            }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
754
755
756
            for (int s = 0; s < LLAMA_MAX_SEQ; ++s) {
                if (cells.seq_pos_min(s) < 0) {
                    continue;
757
758
                }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
759
                LLAMA_LOG_DEBUG("%s: stream[%d] min[%d] = %5d, max[%d] = %5d\n", __func__, stream_id, s, cells.seq_pos_min(s), s, cells.seq_pos_max(s));
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
            }
        }
    }

    uint32_t n_tokens = ubatch.n_tokens;
    uint32_t n_seqs   = 1;

    if (n_stream > 1) {
        GGML_ASSERT(n_tokens % ubatch.n_seqs_unq == 0);

        n_seqs   = ubatch.n_seqs_unq;
        n_tokens = n_tokens / n_seqs;
    }

    slot_info res = {
        /*.s0   =*/ LLAMA_MAX_SEQ,
        /*.s1   =*/ 0,
        /*.strm =*/ { },
        /*.idxs =*/ { },
    };

    res.resize(n_seqs);

    for (uint32_t s = 0; s < n_seqs; ++s) {
        const auto seq_id = ubatch.seq_id_unq[s];

        if (n_stream > 1) {
            GGML_ASSERT(ubatch.n_seq_id[s*n_tokens]    == 1);
            GGML_ASSERT(ubatch.seq_id  [s*n_tokens][0] == seq_id);
        }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
791
792
        res.s0 = std::min<uint32_t>(res.s0, seq_to_stream[seq_id]);
        res.s1 = std::max<uint32_t>(res.s1, seq_to_stream[seq_id]);
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894

        res.strm[s] = seq_to_stream[seq_id];
        res.idxs[s].reserve(n_tokens);

        const auto & cells = v_cells[seq_to_stream[seq_id]];

        uint32_t head_cur = v_heads[seq_to_stream[seq_id]];

        // if we have enough unused cells before the current head ->
        //   better to start searching from the beginning of the cache, hoping to fill it
        if (head_cur > cells.get_used() + 2*n_tokens) {
            head_cur = 0;
        }

        if (n_tokens > cells.size()) {
            LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size());
            return { };
        }

        uint32_t n_tested = 0;

        // for continuous slots, we test that all tokens in the ubatch fit, starting from the current head
        // for non-continuous slots, we test the tokens one by one
        const uint32_t n_test = cont ? n_tokens : 1;

        while (true) {
            if (head_cur + n_test > cells.size()) {
                n_tested += cells.size() - head_cur;
                head_cur = 0;
                continue;
            }

            for (uint32_t i = 0; i < n_test; i++) {
                const auto idx = head_cur;

                head_cur++;
                n_tested++;

                //const llama_pos    pos    = ubatch.pos[i];
                //const llama_seq_id seq_id = ubatch.seq_id[i][0];

                // can we use this cell? either:
                //  - the cell is empty
                //  - the cell is occupied only by one sequence:
                //    - (disabled) mask causally, if the sequence is the same as the one we are inserting
                //    - mask SWA, using current max pos for that sequence in the cache
                //                always insert in the cell with minimum pos
                bool can_use = cells.is_empty(idx);

                if (!can_use && cells.seq_count(idx) == 1) {
                    const llama_pos pos_cell = cells.pos_get(idx);

                    // (disabled) causal mask
                    // note: it's better to purge any "future" tokens beforehand
                    //if (cells.seq_has(idx, seq_id)) {
                    //    can_use = pos_cell >= pos;
                    //}

                    if (!can_use) {
                        const llama_seq_id seq_id_cell = cells.seq_get(idx);

                        // SWA mask
                        if (is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) {
                            can_use = true;
                        }
                    }
                }

                if (can_use) {
                    res.idxs[s].push_back(idx);
                } else {
                    if (cont) {
                        break;
                    }
                }
            }

            if (res.idxs[s].size() == n_tokens) {
                break;
            }

            if (cont) {
                res.idxs[s].clear();
            }

            if (n_tested >= cells.size()) {
                //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
                return { };
            }
        }

        // we didn't find a suitable slot - return empty result
        if (res.idxs[s].size() < n_tokens) {
            return { };
        }
    }

    assert(res.s1 >= res.s0);

    return res;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
895
void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch) {
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
    // keep track of the max sequence position that we would overwrite with this ubatch
    // for non-SWA cache, this would be always empty
    llama_seq_id seq_pos_max_rm[LLAMA_MAX_SEQ];
    for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
        seq_pos_max_rm[s] = -1;
    }

    assert(ubatch.n_tokens == sinfo.n_stream()*sinfo.size());

    for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
        for (uint32_t ii = 0; ii < sinfo.size(); ++ii) {
            const uint32_t i = s*sinfo.size() + ii;

            auto & cells = v_cells[sinfo.strm[s]];

            const auto idx = sinfo.idxs[s][ii];

            if (!cells.is_empty(idx)) {
                assert(cells.seq_count(idx) == 1);

                const llama_seq_id seq_id = cells.seq_get(idx);
                const llama_pos    pos    = cells.pos_get(idx);

                seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos);

                cells.rm(idx);
            }

            cells.pos_set(idx, ubatch.pos[i]);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
926
927
928
929
930
931
932
933
            if (ubatch.is_pos_2d()) {
                llama_kv_cell_ext ext {
                    /*.x =*/ ubatch.pos[i + ubatch.n_tokens*2],
                    /*.y =*/ ubatch.pos[i + ubatch.n_tokens],
                };
                cells.ext_set(idx, ext);
            }

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
            for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) {
                cells.seq_add(idx, ubatch.seq_id[i][s]);
            }
        }
    }

    // note: we want to preserve the invariant that all positions between [pos_min, pos_max] for each sequence
    //       will be present in the cache. so we have to purge any position which is less than those we would overwrite
    //       ref: https://github.com/ggml-org/llama.cpp/pull/13746#issuecomment-2916057092
    for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
        if (seq_pos_max_rm[s] == -1) {
            continue;
        }

        GGML_ASSERT(s < seq_to_stream.size());

        auto & cells = v_cells[seq_to_stream[s]];

        if (cells.seq_pos_min(s) <= seq_pos_max_rm[s]) {
            LLAMA_LOG_DEBUG("%s: purging positions [%d, %d] of sequence %d from KV cache\n",
                    __func__, cells.seq_pos_min(s), seq_pos_max_rm[s], s);

            seq_rm(s, cells.seq_pos_min(s), seq_pos_max_rm[s] + 1);
        }
    }

    // move the head at the end of the slot
    for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
        auto & head = v_heads[sinfo.strm[s]];

        head = sinfo.idxs[s].back() + 1;
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
968
bool llama_kv_cache::get_can_shift() const {
969
970
971
    return true;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
972
uint32_t llama_kv_cache::get_size() const {
973
974
975
976
977
    const auto & cells = v_cells[seq_to_stream[0]];

    return cells.size();
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
978
uint32_t llama_kv_cache::get_n_stream() const {
979
980
981
    return n_stream;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
982
bool llama_kv_cache::get_has_shift() const {
983
984
985
986
987
988
989
990
991
    bool result = false;

    for (uint32_t s = 0; s < n_stream; ++s) {
        result |= v_cells[s].get_has_shift();
    }

    return result;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
992
uint32_t llama_kv_cache::get_n_kv(const slot_info & sinfo) const {
993
994
    uint32_t result = 0;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
995
996
997
998
    // pad the n_kv value so that the graph remains constant across batches and can be reused
    // note: this also helps some backends with performance (f.ex https://github.com/ggml-org/llama.cpp/pull/16812#issuecomment-3455112220)
    const uint32_t n_pad_cur = std::max(n_pad, 256u);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
999
1000
    for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
        const auto & cells = v_cells[sinfo.strm[s]];
1001

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1002
        result = std::max(std::min(cells.size(), std::max(n_pad_cur, GGML_PAD(cells.used_max_p1(), n_pad_cur))), result);
1003
1004
1005
1006
1007
    }

    return result;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1008
ggml_tensor * llama_kv_cache::get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const {
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
    const int32_t ikv = map_layer_ids.at(il);

    auto * k = layers[ikv].k;

    const uint64_t kv_size      = get_size();
    const uint64_t n_embd_k_gqa = k->ne[0];

    assert(n_embd_k_gqa == hparams.n_embd_k_gqa(il));

    const uint32_t ns = sinfo.s1 - sinfo.s0 + 1;

    return ggml_view_4d(ctx, k,
            hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv, ns,
            ggml_row_size(k->type, hparams.n_embd_head_k),
            ggml_row_size(k->type, n_embd_k_gqa),
            ggml_row_size(k->type, n_embd_k_gqa*kv_size),
            ggml_row_size(k->type, n_embd_k_gqa*kv_size)*sinfo.s0);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1028
ggml_tensor * llama_kv_cache::get_v(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const {
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
    const int32_t ikv = map_layer_ids.at(il);

    auto * v = layers[ikv].v;

    const uint64_t kv_size      = get_size();
    const uint64_t n_embd_v_gqa = v->ne[0];

    // [TAG_V_CACHE_VARIABLE]
    assert(n_embd_v_gqa >= hparams.n_embd_v_gqa(il));

    const uint32_t ns = sinfo.s1 - sinfo.s0 + 1;

    if (!v_trans) {
        // note: v->nb[1] <= v->nb[2]
        return ggml_view_4d(ctx, v,
                hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, ns,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1045
1046
1047
                ggml_row_size(v->type, hparams.n_embd_head_v),          // v->nb[1]
                ggml_row_size(v->type, n_embd_v_gqa),                   // v->nb[2]
                ggml_row_size(v->type, n_embd_v_gqa*kv_size),           // v->nb[3]
1048
1049
1050
1051
1052
1053
                ggml_row_size(v->type, n_embd_v_gqa*kv_size)*sinfo.s0);
    }

    // note: v->nb[1] > v->nb[2]
    return ggml_view_4d(ctx, v,
            n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, ns,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1054
1055
1056
            ggml_row_size(v->type, kv_size*hparams.n_embd_head_v),  // v->nb[1]
            ggml_row_size(v->type, kv_size),                        // v->nb[2]
            ggml_row_size(v->type, kv_size*n_embd_v_gqa),           // v->nb[3]
1057
1058
1059
            ggml_row_size(v->type, kv_size*n_embd_v_gqa)*sinfo.s0);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1060
1061
1062
ggml_tensor * llama_kv_cache::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const {
    GGML_UNUSED(sinfo);

1063
1064
    const int32_t ikv = map_layer_ids.at(il);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1065
    ggml_tensor * k = layers[ikv].k;
1066

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1067
1068
1069
    const int64_t n_embd_head = k_cur->ne[0];
    const int64_t n_head      = k_cur->ne[1];
    const int64_t n_tokens    = k_cur->ne[2];
1070

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1071
    const int64_t n_embd_gqa = n_embd_head*n_head;
1072

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1073
1074
1075
    // we can merge dims 0 and 1
    // TODO: add ggml helper function for this?
    GGML_ASSERT(ggml_row_size(k_cur->type, n_embd_head) == k_cur->nb[1]);
1076

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1077
    k_cur = ggml_view_2d(ctx, k_cur, n_embd_gqa, n_tokens, k_cur->nb[2], 0);
1078

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1079
    const int64_t n_stream = k->ne[2];
1080

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1081
1082
    if (n_stream > 1) {
        const int64_t kv_size = get_size();
1083

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1084
1085
        assert(n_embd_gqa == k->ne[0]);
        assert(kv_size    == k->ne[1]);
1086

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1087
1088
1089
1090
1091
1092
        // merge the buffer across all streams because the idxs are global
        k = ggml_reshape_2d(ctx, k, n_embd_gqa, kv_size*n_stream);
    }

    // store the current K values into the cache
    return ggml_set_rows(ctx, k, k_cur, k_idxs);
1093
1094
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1095
1096
1097
ggml_tensor * llama_kv_cache::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const {
    GGML_UNUSED(sinfo);

1098
1099
1100
1101
    const int32_t ikv = map_layer_ids.at(il);

    auto * v = layers[ikv].v;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1102
1103
1104
    const int64_t n_embd_head = v_cur->ne[0];
    const int64_t n_head      = v_cur->ne[1];
    const int64_t n_tokens    = v_cur->ne[2];
1105

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1106
    const int64_t n_embd_gqa = n_embd_head*n_head;
1107

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1108
1109
    // we can merge dims 0 and 1
    GGML_ASSERT(ggml_row_size(v_cur->type, n_embd_head) == v_cur->nb[1]);
1110

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1111
    const int64_t n_stream = v->ne[2];
1112

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1113
1114
1115
    // take this branch when FA is enabled (the V cache is not transposed)
    if (!v_trans) {
        v_cur = ggml_view_2d(ctx, v_cur, n_embd_gqa, n_tokens, v_cur->nb[2], 0);
1116

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1117
1118
        if (n_stream > 1) {
            const int64_t kv_size = get_size();
1119

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1120
1121
            assert(n_embd_gqa == v->ne[0]);
            assert(kv_size    == v->ne[1]);
1122

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1123
1124
1125
            // merge the buffer across all streams because the idxs are global
            v = ggml_reshape_2d(ctx, v, n_embd_gqa, kv_size*n_stream);
        }
1126

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1127
1128
        return ggml_set_rows(ctx, v, v_cur, v_idxs);
    }
1129

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1130
1131
1132
    if (ggml_row_size(v_cur->type, n_embd_gqa) == v_cur->nb[2]) {
        // we can merge dims 0, 1 and 2
        v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_gqa, n_tokens);
1133
    } else {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1134
1135
1136
        // otherwise -> make a copy to get contiguous data
        v_cur = ggml_cont_2d   (ctx, v_cur, n_embd_gqa, n_tokens);
    }
1137

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1138
1139
1140
    // [TAG_V_CACHE_VARIABLE]
    if (n_embd_gqa < v->ne[0]) {
        v_cur = ggml_pad(ctx, v_cur, v->ne[0] - n_embd_gqa, 0, 0, 0);
1141
1142
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1143
1144
1145
1146
1147
1148
    // in this branch the v_idxs are constructed in such a way that each row is a single head element
    ggml_tensor * v_view = ggml_reshape_2d(ctx, v, 1, ggml_nelements(v));

    v_cur = ggml_reshape_2d(ctx, v_cur, 1, ggml_nelements(v_cur));

    return ggml_set_rows(ctx, v_view, v_cur, v_idxs);
1149
1150
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1151
ggml_tensor * llama_kv_cache::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
1152
1153
1154
1155
1156
1157
1158
1159
1160
    const uint32_t n_tokens = ubatch.n_tokens;

    ggml_tensor * k_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);

    ggml_set_input(k_idxs);

    return k_idxs;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1161
ggml_tensor * llama_kv_cache::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
    const uint32_t n_tokens = ubatch.n_tokens;

    ggml_tensor * v_idxs;

    if (!v_trans) {
        v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
    } else {
        v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens*hparams.n_embd_v_gqa_max());
    }

    ggml_set_input(v_idxs);

    return v_idxs;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1177
void llama_kv_cache::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
    const uint32_t n_tokens = ubatch->n_tokens;
    GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream());

    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
    int64_t * data = (int64_t *) dst->data;

    for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
        const int64_t offs = sinfo.strm[s]*get_size();

        for (uint32_t i = 0; i < sinfo.size(); ++i) {
            data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i];
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1193
void llama_kv_cache::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
    const uint32_t n_tokens = ubatch->n_tokens;
    GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream());

    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
    int64_t * data = (int64_t *) dst->data;

    if (!v_trans) {
        for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
            const int64_t offs = sinfo.strm[s]*get_size();

            for (uint32_t i = 0; i < sinfo.size(); ++i) {
                data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i];
            }
        }
    } else {
        // note: the V cache is transposed when not using flash attention
        const int64_t kv_size = get_size();

        const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa_max();

        for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
            const int64_t offs = sinfo.strm[s]*kv_size*n_embd_v_gqa;

            for (uint32_t i = 0; i < sinfo.size(); ++i) {
                for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                    data[s*sinfo.size()*n_embd_v_gqa + i*n_embd_v_gqa + j] = offs + j*kv_size + sinfo.idxs[s][i];
                }
            }
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1226
void llama_kv_cache::set_input_k_shift(ggml_tensor * dst) const {
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));

    int32_t * data = (int32_t *) dst->data;

    for (uint32_t s = 0; s < n_stream; ++s) {
        const auto & cells = v_cells[s];

        for (uint32_t i = 0; i < cells.size(); ++i) {
            data[s*cells.size() + i] = cells.is_empty(i) ? 0 : cells.get_shift(i);
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1240
void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
    const uint32_t n_tokens = ubatch->n_tokens;

    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
    float * data = (float *) dst->data;

    const int64_t n_kv     = dst->ne[0];
    const int64_t n_stream = dst->ne[3]; // num streams in the current ubatch

    GGML_ASSERT(n_tokens%n_stream == 0);

    // n_tps == n_tokens_per_stream
1252
    const int64_t n_tps = n_tokens/n_stream;
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

    std::fill(data, data + ggml_nelements(dst), -INFINITY);

    // Use only the previous KV cells of the correct sequence for each token of the ubatch.
    // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
    // Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
    //   Causal mask:
    //      xxx-------
    //      xxxx------
    //      xxxxx-----
    //   Non-causal mask:
    //      xxxxx-----
    //      xxxxx-----
    //      xxxxx-----
    // To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
    // TODO: optimize this section
    for (uint32_t h = 0; h < 1; ++h) {
        for (uint32_t s = 0; s < n_stream; ++s) {
            for (uint32_t ii = 0; ii < n_tps; ++ii) {
                const uint32_t i = s*n_tps + ii;

                const llama_seq_id seq_id = ubatch->seq_id[i][0];

                const auto & cells = v_cells[seq_to_stream[seq_id]];

                const llama_pos p1 = ubatch->pos[i];

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1280
1281
1282
1283
1284
                // for M-RoPE
                const bool is_2d = ubatch->is_pos_2d();
                const llama_pos p1_x = is_2d ? ubatch->pos[i + ubatch->n_tokens*2] : 0;
                const llama_pos p1_y = is_2d ? ubatch->pos[i + ubatch->n_tokens]   : 0;

1285
                const uint64_t idst = n_kv*(h*n_stream*n_tps + s*n_tps + ii);
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303

                for (uint32_t j = 0; j < n_kv; ++j) {
                    if (cells.is_empty(j)) {
                        continue;
                    }

                    // mask the token if not the same sequence
                    if (!cells.seq_has(j, seq_id)) {
                        continue;
                    }

                    const llama_pos p0 = cells.pos_get(j);

                    // mask future tokens
                    if (causal_attn && p0 > p1) {
                        continue;
                    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1304
1305
1306
1307
1308
1309
1310
1311
                    // M-RoPE causal mask
                    if (causal_attn && is_2d && p0 == p1) {
                        const auto & p0_ext = cells.ext_get(j);
                        if (p0_ext.is_2d_gt(p1_x, p1_y)) {
                            continue;
                        }
                    }

1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
                    // apply SWA if any
                    if (is_masked_swa(p0, p1)) {
                        continue;
                    }

                    data[idst + j] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f;
                }
            }
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1324
void llama_kv_cache::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
    const int64_t n_tokens = ubatch->n_tokens;

    GGML_ASSERT(n_stream == 1 && "TODO: support multiple streams");
    const auto & cells = v_cells[0];

    GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
    GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing

    int32_t * data = (int32_t *) dst->data;

    const int32_t n_kv = dst->ne[0];

    for (int h = 0; h < 1; ++h) {
        for (int i = 0; i < n_tokens; ++i) {
            for (int j = 0; j < n_kv; ++j) {
                // the position when the cells is empty is irrelevant - it will be masked out later in the attention
                const llama_pos p0 = cells.is_empty(j) ? -1 : cells.pos_get(j);

                data[h*(n_kv*n_tokens) + i*n_kv + j] = llama_relative_position_bucket(p0, ubatch->pos[i], hparams.n_rel_attn_bkts, false);
            }
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1349
size_t llama_kv_cache::total_size() const {
1350
1351
    size_t size = 0;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1352
    for (const auto & [_, buf] : ctxs_bufs) {
1353
1354
1355
1356
1357
1358
        size += ggml_backend_buffer_get_size(buf.get());
    }

    return size;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1359
size_t llama_kv_cache::size_k_bytes() const {
1360
1361
1362
1363
1364
1365
1366
1367
1368
    size_t size_k_bytes = 0;

    for (const auto & layer : layers) {
        size_k_bytes += ggml_nbytes(layer.k);
    }

    return size_k_bytes;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1369
size_t llama_kv_cache::size_v_bytes() const {
1370
1371
1372
1373
1374
1375
1376
1377
1378
    size_t size_v_bytes = 0;

    for (const auto & layer : layers) {
        size_v_bytes += ggml_nbytes(layer.v);
    }

    return size_v_bytes;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1379
ggml_tensor * llama_kv_cache::build_rope_shift(
1380
1381
1382
1383
1384
1385
1386
1387
1388
        const llama_cparams & cparams,
               ggml_context * ctx,
                ggml_tensor * cur,
                ggml_tensor * shift,
                ggml_tensor * factors,
                      float   freq_base,
                      float   freq_scale) const {
    const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;

1389
1390
1391
1392
    const auto & yarn_ext_factor  = cparams.yarn_ext_factor;
    const auto & yarn_beta_fast   = cparams.yarn_beta_fast;
    const auto & yarn_beta_slow   = cparams.yarn_beta_slow;
    const auto & yarn_attn_factor = cparams.yarn_attn_factor;
1393
1394

    const auto & n_rot     = hparams.n_rot;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1395
    const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE || hparams.rope_type == LLAMA_ROPE_TYPE_IMROPE
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
                                // @ngxson : this is a workaround
                                // for M-RoPE, we want to rotate the whole vector when doing KV shift
                                // a normal RoPE should work, we just need to use the correct ordering
                                // ref: https://github.com/ggml-org/llama.cpp/pull/13870
                                ? LLAMA_ROPE_TYPE_NEOX
                                : hparams.rope_type;

    ggml_tensor * tmp;

    if (ggml_is_quantized(cur->type)) {
        // dequantize to f32 -> RoPE -> quantize back
        tmp = ggml_cast(ctx, cur, GGML_TYPE_F32);

        tmp = ggml_rope_ext(ctx, tmp,
                shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);

        tmp = ggml_cpy(ctx, tmp, cur);
    } else {
        // we rotate only the first n_rot dimensions
        tmp = ggml_rope_ext_inplace(ctx, cur,
                shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
                yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
    }

    return tmp;
}

class llm_graph_input_k_shift : public llm_graph_input_i {
public:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1426
    llm_graph_input_k_shift(const llama_kv_cache * kv_self) : kv_self(kv_self) {}
1427
1428
1429
1430
1431
1432
    virtual ~llm_graph_input_k_shift() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * k_shift; // I32 [kv_size*n_stream]

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1433
    const llama_kv_cache * kv_self;
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
};

void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
    GGML_UNUSED(ubatch);

    if (k_shift) {
        kv_self->set_input_k_shift(k_shift);
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1444
ggml_cgraph * llama_kv_cache::build_graph_shift(llm_graph_result * res, llama_context * lctx) const {
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
    auto * ctx = res->get_ctx();
    auto * gf  = res->get_gf();

    const auto & n_embd_head_k = hparams.n_embd_head_k;
  //const auto & n_embd_head_v = hparams.n_embd_head_v;

    auto inp = std::make_unique<llm_graph_input_k_shift>(this);

    inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, (int64_t) get_size()*n_stream);
    ggml_set_input(inp->k_shift);

    const auto & cparams = lctx->get_cparams();

    for (const auto & layer : layers) {
        const uint32_t il = layer.il;

        const int64_t n_head_kv    = hparams.n_head_kv(il);
        const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);

        const float freq_base_l  = model.get_rope_freq_base (cparams, il);
        const float freq_scale_l = model.get_rope_freq_scale(cparams, il);

        ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);

        ggml_tensor * k =
            ggml_view_3d(ctx, layer.k,
                n_embd_head_k, n_head_kv, get_size()*n_stream,
                ggml_row_size(layer.k->type, n_embd_head_k),
                ggml_row_size(layer.k->type, n_embd_k_gqa),
                0);

        ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);

        ggml_build_forward_expand(gf, cur);
    }

    res->add_input(std::move(inp));

    return gf;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1486
1487
bool llama_kv_cache::is_masked_swa(llama_pos p0, llama_pos p1) const {
    return llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1);
1488
1489
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1490
1491
void llama_kv_cache::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
    GGML_UNUSED(flags);
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542

    io.write(&n_stream, sizeof(n_stream));

    for (uint32_t s = 0; s < n_stream; ++s) {
        cell_ranges_t cr { s, {} };

        uint32_t cell_count = 0;

        const auto & cells = v_cells[s];

        // Count the number of cells with the specified seq_id
        // Find all the ranges of cells with this seq id (or all, when -1)
        uint32_t cell_range_begin = cells.size();

        for (uint32_t i = 0; i < cells.size(); ++i) {
            if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) {
                ++cell_count;
                if (cell_range_begin == cells.size()) {
                    cell_range_begin = i;
                }
            } else {
                if (cell_range_begin != cells.size()) {
                    cr.data.emplace_back(cell_range_begin, i);
                    cell_range_begin = cells.size();
                }
            }
        }

        if (cell_range_begin != cells.size()) {
            cr.data.emplace_back(cell_range_begin, cells.size());
        }

        // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
        uint32_t cell_count_check = 0;
        for (const auto & range : cr.data) {
            cell_count_check += range.second - range.first;
        }
        GGML_ASSERT(cell_count == cell_count_check);

        io.write(&cell_count, sizeof(cell_count));

        // skip empty streams
        if (cell_count == 0) {
            continue;
        }

        state_write_meta(io, cr, seq_id);
        state_write_data(io, cr);
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1543
1544
1545
void llama_kv_cache::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) {
    GGML_UNUSED(flags);

1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
    GGML_ASSERT(seq_id == -1 || (seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()));

    uint32_t n_stream_cur;
    io.read_to(&n_stream_cur, sizeof(n_stream_cur));
    if (n_stream_cur != n_stream) {
        throw std::runtime_error("n_stream mismatch");
    }

    for (uint32_t s = 0; s < n_stream; ++s) {
        uint32_t cell_count;
        io.read_to(&cell_count, sizeof(cell_count));

        if (cell_count == 0) {
            continue;
        }

        const uint32_t strm = seq_id == -1 ? s : seq_to_stream[seq_id];

1564
1565
        slot_info sinfo;

1566
        bool res = true;
1567
1568
        res = res && state_read_meta(io, strm, cell_count, sinfo, seq_id);
        res = res && state_read_data(io, strm, cell_count, sinfo);
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580

        if (!res) {
            if (seq_id == -1) {
                clear(true);
            } else {
                seq_rm(seq_id, -1, -1);
            }
            throw std::runtime_error("failed to restore kv cache");
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1581
void llama_kv_cache::state_write_meta(llama_io_write_i & io, const cell_ranges_t & cr, llama_seq_id seq_id) const {
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
    const auto & cells = v_cells[cr.strm];

    for (const auto & range : cr.data) {
        for (uint32_t i = range.first; i < range.second; ++i) {
            std::vector<llama_seq_id> seq_ids;

            for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) {
                if (cur == seq_id || seq_id == -1) {
                    if (cells.seq_has(i, cur)) {
                        seq_ids.push_back(cur);
                    }
                }
            }

            const llama_pos pos     = cells.pos_get(i);
            const uint32_t n_seq_id = seq_ids.size();

            io.write(&pos,      sizeof(pos));
            io.write(&n_seq_id, sizeof(n_seq_id));

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1602
1603
1604
            // TODO: we also need to save llama_kv_cell_ext when apply_ubatch() support loading it
            //       see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350

1605
1606
1607
1608
1609
1610
1611
            for (const auto & seq_id : seq_ids) {
                io.write(&seq_id, sizeof(seq_id));
            }
        }
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1612
void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t & cr) const {
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
    const auto & cells = v_cells[cr.strm];

    const uint32_t v_trans = this->v_trans ? 1 : 0;
    const uint32_t n_layer = layers.size();

    io.write(&v_trans, sizeof(v_trans));
    io.write(&n_layer, sizeof(n_layer));

    std::vector<uint8_t> tmp_buf;

    // Iterate and write all the keys first, each row is a cell
    // Get whole range at a time
    for (const auto & layer : layers) {
        const uint32_t il = layer.il;

        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);

        auto * k = layer.k_stream[cr.strm];

        // Write key type
        const int32_t k_type_i = (int32_t) k->type;
        io.write(&k_type_i, sizeof(k_type_i));

        // Write row size of key
        const uint64_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
        io.write(&k_size_row, sizeof(k_size_row));

        // Read each range of cells of k_size length each into tmp_buf and write out
        for (const auto & range : cr.data) {
            const size_t range_size = range.second - range.first;
            const size_t buf_size = range_size * k_size_row;
            io.write_tensor(k, range.first * k_size_row, buf_size);
        }
    }

    if (!v_trans) {
        for (const auto & layer : layers) {
            const uint32_t il = layer.il;

            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);

            auto * v = layer.v_stream[cr.strm];

            // Write value type
            const int32_t v_type_i = (int32_t) v->type;
            io.write(&v_type_i, sizeof(v_type_i));

            // Write row size of value
            const uint64_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
            io.write(&v_size_row, sizeof(v_size_row));

            // Read each range of cells of v_size length each into tmp_buf and write out
            for (const auto & range : cr.data) {
                const size_t range_size = range.second - range.first;
                const size_t buf_size = range_size * v_size_row;
                io.write_tensor(v, range.first * v_size_row, buf_size);
            }
        }
    } else {
        // When v is transposed, we also need the element size and get the element ranges from each row
        const uint32_t kv_size = cells.size();

        for (const auto & layer : layers) {
            const uint32_t il = layer.il;

            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);

            auto * v = layer.v_stream[cr.strm];

            // Write value type
            const int32_t v_type_i = (int32_t) v->type;
            io.write(&v_type_i, sizeof(v_type_i));

            // Write element size
            const uint32_t v_size_el = ggml_type_size(v->type);
            io.write(&v_size_el, sizeof(v_size_el));

            // Write GQA embedding size
            io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));

            // For each row, we get the element values of each cell
            for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                // Read each range of cells of v_size_el length each into tmp_buf and write out
                for (const auto & range : cr.data) {
                    const size_t range_size = range.second - range.first;
                    const size_t src_offset = (range.first + j * kv_size) * v_size_el;
                    const size_t buf_size = range_size * v_size_el;
                    io.write_tensor(v, src_offset, buf_size);
                }
            }
        }
    }
}

1707
bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, slot_info & sinfo, llama_seq_id dest_seq_id) {
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
    auto & cells = v_cells[strm];
    auto & head  = v_heads[strm];

    if (dest_seq_id != -1) {
        // single sequence
        seq_rm(dest_seq_id, -1, -1);

        llama_batch_allocr balloc(hparams.n_pos_per_embd());

        llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1);

        ubatch.seq_id_unq[0] = dest_seq_id;

        for (uint32_t i = 0; i < cell_count; ++i) {
            llama_pos pos;
            uint32_t n_seq_id;

            io.read_to(&pos,      sizeof(pos));
            io.read_to(&n_seq_id, sizeof(n_seq_id));

            if (n_seq_id != 1) {
                LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
                return false;
            }

            // read the sequence id, but directly discard it - we will use dest_seq_id instead
            {
                llama_seq_id seq_id;
                io.read_to(&seq_id, sizeof(seq_id));
            }

            ubatch.pos[i]      = pos;
            ubatch.n_seq_id[i] = n_seq_id;
            ubatch.seq_id[i]   = &dest_seq_id;
        }

1744
        sinfo = find_slot(ubatch, false);
1745
1746
1747
1748
1749
        if (sinfo.empty()) {
            LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
            return false;
        }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1750
1751
        // TODO: we cannot yet restore llama_kv_cell_ext as the apply_ubatch() does not support it yet
        //       see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350
1752
1753
        apply_ubatch(sinfo, ubatch);

1754
        LLAMA_LOG_DEBUG("%s: cell_count = %d, dest_seq_id = %d\n", __func__, cell_count, dest_seq_id);
1755

1756
1757
1758
1759
1760
1761
1762
1763
        // DEBUG CHECK: verify that all cells were allocated and have correct seq_id and pos values
        GGML_ASSERT(sinfo.n_stream() == 1);
        GGML_ASSERT(sinfo.idxs[0].size() == cell_count);
        for (uint32_t i = 0; i < cell_count; ++i) {
            const uint32_t idx = sinfo.idxs[0][i];
            GGML_ASSERT(cells.pos_get(idx) == ubatch.pos[i]);
            GGML_ASSERT(cells.seq_has(idx, dest_seq_id));
        }
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
    } else {
        // whole KV cache restore

        if (cell_count > cells.size()) {
            LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
            return false;
        }

        clear(true);

        for (uint32_t i = 0; i < cell_count; ++i) {
            llama_pos pos;
            uint32_t  n_seq_id;

            io.read_to(&pos,      sizeof(pos));
            io.read_to(&n_seq_id, sizeof(n_seq_id));

            cells.pos_set(i, pos);

            for (uint32_t j = 0; j < n_seq_id; ++j) {
                llama_seq_id seq_id;
                io.read_to(&seq_id, sizeof(seq_id));

                if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) {
                    LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max);
                    return false;
                }

                cells.seq_add(i, seq_id);
            }
        }

1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
        // Create contiguous slot_info for whole cache restore
        sinfo.s0 = strm;
        sinfo.s1 = strm;
        sinfo.resize(1);
        sinfo.strm[0] = strm;
        sinfo.idxs[0].resize(cell_count);
        for (uint32_t i = 0; i < cell_count; ++i) {
            sinfo.idxs[0][i] = i;
        }

1806
1807
1808
1809
1810
1811
        head = 0;
    }

    return true;
}

1812
bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, const slot_info & sinfo) {
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
    auto & cells = v_cells[strm];

    uint32_t v_trans;
    uint32_t n_layer;

    io.read_to(&v_trans, sizeof(v_trans));
    io.read_to(&n_layer, sizeof(n_layer));

    if (n_layer != layers.size()) {
        LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size());
        return false;
    }

    if (cell_count > cells.size()) {
        LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size());
        return false;
    }

    if (this->v_trans != (bool) v_trans) {
        LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
        return false;
    }

    // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
    for (const auto & layer : layers) {
        const uint32_t il = layer.il;

        const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);

        auto * k = layer.k_stream[strm];

        // Read type of key
        int32_t k_type_i_ref;
        io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
        const int32_t k_type_i = (int32_t) k->type;
        if (k_type_i != k_type_i_ref) {
            LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
            return false;
        }

        // Read row size of key
        uint64_t k_size_row_ref;
        io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
        const size_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
        if (k_size_row != k_size_row_ref) {
            LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
            return false;
        }

        if (cell_count) {
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
            if (sinfo.is_contiguous()) {
                // Fast path: contiguous cells, single memcpy
                ggml_backend_tensor_set(k, io.read(cell_count * k_size_row), sinfo.head() * k_size_row, cell_count * k_size_row);
            } else {
                // Slow path: scatter to non-contiguous positions
                const void * src = io.read(cell_count * k_size_row);
                for (uint32_t i = 0; i < cell_count; ++i) {
                    const size_t dst_offset = sinfo.idxs[0][i] * k_size_row;
                    ggml_backend_tensor_set(k, (const char*)src + i * k_size_row, dst_offset, k_size_row);
                }
            }
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
        }
    }

    if (!this->v_trans) {
        for (const auto & layer : layers) {
            const uint32_t il = layer.il;

            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);

            auto * v = layer.v_stream[strm];

            // Read type of value
            int32_t v_type_i_ref;
            io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
            const int32_t v_type_i = (int32_t) v->type;
            if (v_type_i != v_type_i_ref) {
                LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
                return false;
            }

            // Read row size of value
            uint64_t v_size_row_ref;
            io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
            const size_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
            if (v_size_row != v_size_row_ref) {
                LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
                return false;
            }

            if (cell_count) {
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
                if (sinfo.is_contiguous()) {
                    // Fast path: contiguous cells, single memcpy
                    ggml_backend_tensor_set(v, io.read(cell_count * v_size_row), sinfo.head() * v_size_row, cell_count * v_size_row);
                } else {
                    // Slow path: scatter to non-contiguous positions
                    const void * src = io.read(cell_count * v_size_row);
                    for (uint32_t i = 0; i < cell_count; ++i) {
                        const size_t dst_offset = sinfo.idxs[0][i] * v_size_row;
                        ggml_backend_tensor_set(v, (const char*)src + i * v_size_row, dst_offset, v_size_row);
                    }
                }
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
            }
        }
    } else {
        // For each layer, read the values for each cell (transposed)
        for (const auto & layer : layers) {
            const uint32_t il = layer.il;

            const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);

            auto * v = layer.v_stream[strm];

            // Read type of value
            int32_t v_type_i_ref;
            io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
            const int32_t v_type_i = (int32_t) v->type;
            if (v_type_i != v_type_i_ref) {
                LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
                return false;
            }

            // Read element size of value
            uint32_t v_size_el_ref;
            io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
            const size_t v_size_el = ggml_type_size(v->type);
            if (v_size_el != v_size_el_ref) {
                LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
                return false;
            }

            // Read GQA embedding size
            uint32_t n_embd_v_gqa_ref;
            io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
            if (n_embd_v_gqa != n_embd_v_gqa_ref) {
                LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
                return false;
            }

            if (cell_count) {
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
                if (sinfo.is_contiguous()) {
                    // Fast path: contiguous cells
                    const uint32_t h = sinfo.head();
                    for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                        const size_t dst_offset = (h + j * cells.size()) * v_size_el;
                        ggml_backend_tensor_set(v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
                    }
                } else {
                    // Slow path: scatter to non-contiguous positions
                    for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
                        const void * src = io.read(cell_count * v_size_el);
                        for (uint32_t i = 0; i < cell_count; ++i) {
                            const size_t dst_offset = (sinfo.idxs[0][i] + j * cells.size()) * v_size_el;
                            ggml_backend_tensor_set(v, (const char*)src + i * v_size_el, dst_offset, v_size_el);
                        }
                    }
1969
1970
1971
1972
1973
1974
1975
1976
1977
                }
            }
        }
    }

    return true;
}

//
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1978
// llama_kv_cache_context
1979
1980
//

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1981
llama_kv_cache_context::llama_kv_cache_context(llama_memory_status status) : status(status) {}
1982

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1983
1984
llama_kv_cache_context::llama_kv_cache_context(
        llama_kv_cache * kv) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv) {
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
    n_kv = kv->get_size();

    const uint32_t n_stream = kv->get_n_stream();

    // create a dummy slot info - the actual data is irrelevant. we just need to build the graph
    sinfos.resize(1);
    sinfos[0].s0 = 0;
    sinfos[0].s1 = n_stream - 1;
    sinfos[0].idxs.resize(n_stream);
    for (uint32_t s = 0; s < n_stream; ++s) {
        sinfos[0].strm.push_back(s);
        sinfos[0].idxs[s].resize(1, 0);
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2000
2001
llama_kv_cache_context::llama_kv_cache_context(
        llama_kv_cache * kv,
2002
2003
        llama_context * lctx,
        bool do_shift,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2004
2005
        stream_copy_info sc_info) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), sc_info(std::move(sc_info)) {
    if (!do_shift && this->sc_info.empty()) {
2006
2007
2008
2009
        status = LLAMA_MEMORY_STATUS_NO_UPDATE;
    }
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2010
2011
2012
llama_kv_cache_context::llama_kv_cache_context(
        llama_kv_cache * kv,
        llama_kv_cache::slot_info_vec_t sinfos,
2013
2014
2015
        std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sinfos(std::move(sinfos)), ubatches(std::move(ubatches)) {
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2016
llama_kv_cache_context::~llama_kv_cache_context() = default;
2017

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2018
bool llama_kv_cache_context::next() {
2019
2020
2021
2022
2023
2024
2025
2026
2027
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);

    if (++i_cur >= ubatches.size()) {
        return false;
    }

    return true;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2028
bool llama_kv_cache_context::apply() {
2029
2030
2031
2032
    assert(!llama_memory_status_is_fail(status));

    // no ubatches -> this is a KV cache update
    if (ubatches.empty()) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2033
        kv->update(lctx, do_shift, sc_info);
2034
2035
2036
2037
2038

        return true;
    }

    kv->apply_ubatch(sinfos[i_cur], ubatches[i_cur]);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2039
    n_kv = kv->get_n_kv(sinfos[i_cur]);
2040
2041
2042
2043

    return true;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2044
llama_memory_status llama_kv_cache_context::get_status() const {
2045
2046
2047
    return status;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2048
const llama_ubatch & llama_kv_cache_context::get_ubatch() const {
2049
2050
2051
2052
2053
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);

    return ubatches[i_cur];
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2054
uint32_t llama_kv_cache_context::get_n_kv() const {
2055
2056
2057
    return n_kv;
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2058
ggml_tensor * llama_kv_cache_context::get_k(ggml_context * ctx, int32_t il) const {
2059
2060
2061
    return kv->get_k(ctx, il, n_kv, sinfos[i_cur]);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2062
ggml_tensor * llama_kv_cache_context::get_v(ggml_context * ctx, int32_t il) const {
2063
2064
2065
    return kv->get_v(ctx, il, n_kv, sinfos[i_cur]);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2066
ggml_tensor * llama_kv_cache_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il) const {
2067
2068
2069
    return kv->cpy_k(ctx, k_cur, k_idxs, il, sinfos[i_cur]);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2070
ggml_tensor * llama_kv_cache_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il) const {
2071
2072
2073
    return kv->cpy_v(ctx, v_cur, v_idxs, il, sinfos[i_cur]);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2074
ggml_tensor * llama_kv_cache_context::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
2075
2076
2077
    return kv->build_input_k_idxs(ctx, ubatch);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2078
ggml_tensor * llama_kv_cache_context::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
2079
2080
2081
    return kv->build_input_v_idxs(ctx, ubatch);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2082
void llama_kv_cache_context::set_input_k_shift(ggml_tensor * dst) const {
2083
2084
2085
    kv->set_input_k_shift(dst);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2086
void llama_kv_cache_context::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
2087
2088
2089
    kv->set_input_k_idxs(dst, ubatch, sinfos[i_cur]);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2090
void llama_kv_cache_context::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
2091
2092
2093
    kv->set_input_v_idxs(dst, ubatch, sinfos[i_cur]);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2094
void llama_kv_cache_context::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
2095
2096
2097
    kv->set_input_kq_mask(dst, ubatch, causal_attn);
}

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2098
void llama_kv_cache_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
2099
2100
    kv->set_input_pos_bucket(dst, ubatch);
}