llama-graph.h 28 KB
Newer Older
1
2
3
#pragma once

#include "llama-arch.h"
4
#include "llama-batch.h"
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include "llama-hparams.h"
#include "llama-adapter.h"

#include <cstdint>
#include <vector>
#include <memory>
#include <set>
#include <functional>

struct ggml_cgraph;
struct ggml_context;
struct ggml_tensor;

struct llama_cparams;

20
21
struct llama_memory_context_i;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
22
23
class llama_kv_cache_context;
class llama_kv_cache_iswa_context;
24
25
class llama_memory_recurrent_context;
class llama_memory_hybrid_context;
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// certain models (typically multi-modal) can produce different types of graphs
enum llm_graph_type {
    LLM_GRAPH_TYPE_DEFAULT,
    LLM_GRAPH_TYPE_ENCODER,
    LLM_GRAPH_TYPE_DECODER,
};

enum llm_ffn_op_type {
    LLM_FFN_SILU,
    LLM_FFN_GELU,
    LLM_FFN_RELU,
    LLM_FFN_RELU_SQR,
    LLM_FFN_SWIGLU,
40
41
42
    LLM_FFN_GEGLU,
    LLM_FFN_REGLU,
    LLM_FFN_SWIGLU_OAI_MOE,
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
};

enum llm_ffn_gate_type {
    LLM_FFN_SEQ,
    LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
};

enum llm_norm_type {
    LLM_NORM,
    LLM_NORM_RMS,
    LLM_NORM_GROUP,
};

// TODO: tmp - need something better to pass the data from the encoder to the decoder
struct llama_cross {
    // the output embeddings from the encoder as a ggml tensor
    // TODO: this needs more work to be correct, for now copy the embeddings data to host memory
    //       ref: https://github.com/ggml-org/llama.cpp/pull/11213#discussion_r1969892524
    //ggml_tensor * t_embd = nullptr;

    int64_t n_embd = 0;
    int64_t n_enc  = 0;

    // embeddings data copied to host memory (tmp)
    std::vector<float> v_embd;

    // needed to construct the cross-attention mask in the decoder
    std::vector<std::set<llama_seq_id>> seq_ids_enc;
};

73
74
struct llm_graph_params;

75
76
77
78
79
80
//
// llm_graph_input
//

class llm_graph_input_i {
public:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
81
82
83
84
85
    llm_graph_input_i() {
        const char * LLAMA_GRAPH_INPUT_DEBUG = getenv("LLAMA_GRAPH_INPUT_DEBUG");
        debug = LLAMA_GRAPH_INPUT_DEBUG ? atoi(LLAMA_GRAPH_INPUT_DEBUG) : 0;
    }

86
87
88
    virtual ~llm_graph_input_i() = default;

    virtual void set_input(const llama_ubatch * ubatch) = 0;
89
90
91
92
93
94
95
96
97

    // return true if the resulting input tensors using the provided graph parameters would be
    //   the same as the previous input tensors that we have currently stored in the object
    virtual bool can_reuse(const llm_graph_params & params) {
        // returning false here by default will prevent from reusing the graph if the check
        //   for the input type has not been implemented yet
        GGML_UNUSED(params);
        return false;
    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
98
99
100
protected:
    // env: LLAMA_GRAPH_INPUT_DEBUG
    int debug = 0;
101
102
103
104
105
106
107
108
109
110
111
};

using llm_graph_input_ptr = std::unique_ptr<llm_graph_input_i>;

class llm_graph_input_embd : public llm_graph_input_i {
public:
    llm_graph_input_embd()          = default;
    virtual ~llm_graph_input_embd() = default;

    void set_input(const llama_ubatch * ubatch) override;

112
113
    bool can_reuse(const llm_graph_params & params) override;

114
115
116
117
118
119
    ggml_tensor * tokens = nullptr; // I32 [n_batch]
    ggml_tensor * embd   = nullptr; // F32 [n_embd, n_batch]
};

class llm_graph_input_pos : public llm_graph_input_i {
public:
120
    llm_graph_input_pos(uint32_t n_pos_per_embd) : n_pos_per_embd(n_pos_per_embd) {}
121
122
123
124
    virtual ~llm_graph_input_pos() = default;

    void set_input(const llama_ubatch * ubatch) override;

125
126
    bool can_reuse(const llm_graph_params & params) override;

127
128
    ggml_tensor * pos = nullptr; // I32 [n_batch]

129
    const uint32_t n_pos_per_embd = 1;
130
131
132
133
134
};

// temperature tuning, used by llama4
class llm_graph_input_attn_temp : public llm_graph_input_i {
public:
135
136
    llm_graph_input_attn_temp(uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale, float f_attn_temp_offset)
        : n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale), f_attn_temp_offset(f_attn_temp_offset) {}
137
138
139
140
141
142
143
144
    virtual ~llm_graph_input_attn_temp() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * attn_scale = nullptr; // F32 [n_batch]

    const uint32_t n_attn_temp_floor_scale;
    const float    f_attn_temp_scale;
145
    const float    f_attn_temp_offset;
146
147
148
149
150
151
152
153
154
155
156
};

class llm_graph_input_pos_bucket : public llm_graph_input_i {
public:
    llm_graph_input_pos_bucket(const llama_hparams & hparams) : hparams(hparams) {}
    virtual ~llm_graph_input_pos_bucket() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * pos_bucket = nullptr; // I32 [n_batch, n_batch]

157
    const llama_hparams hparams;
158
159
160
161
162
163
};

class llm_graph_input_pos_bucket_kv : public llm_graph_input_i {
public:
    llm_graph_input_pos_bucket_kv(
            const llama_hparams & hparams,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
164
            const llama_kv_cache_context * mctx) : hparams(hparams), mctx(mctx) {}
165
166
167
168
169
170
    virtual ~llm_graph_input_pos_bucket_kv() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch]

171
172
    const llama_hparams hparams;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
173
    const llama_kv_cache_context * mctx;
174
175
176
177
178
179
180
};

class llm_graph_input_out_ids : public llm_graph_input_i {
public:
    llm_graph_input_out_ids(
            const llama_hparams & hparams,
            const llama_cparams & cparams,
181
            uint32_t n_outputs) : hparams(hparams), cparams(cparams), n_outputs(n_outputs) {}
182
183
184
185
    virtual ~llm_graph_input_out_ids() = default;

    void set_input(const llama_ubatch * ubatch) override;

186
187
    bool can_reuse(const llm_graph_params & params) override;

188
189
    ggml_tensor * out_ids; // I32 [n_outputs]

190
191
    const llama_hparams hparams;
    const llama_cparams cparams;
192

193
    const uint32_t n_outputs;
194
195
196
197
198
199
200
201
202
203
204
};

class llm_graph_input_mean : public llm_graph_input_i {
public:
    llm_graph_input_mean(const llama_cparams & cparams) : cparams(cparams) {}
    virtual ~llm_graph_input_mean() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * mean; // F32 [n_batch, n_batch]

205
    const llama_cparams cparams;
206
207
208
209
};

class llm_graph_input_cls : public llm_graph_input_i {
public:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
210
    llm_graph_input_cls(const llama_cparams & cparams, const llm_arch arch) : cparams(cparams), arch(arch) {}
211
212
213
214
215
216
    virtual ~llm_graph_input_cls() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * cls; // I32 [n_batch]

217
    const llama_cparams cparams;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
218
    const llm_arch arch;
219
220
};

221
class llm_graph_input_rs : public llm_graph_input_i {
222
public:
223
224
    llm_graph_input_rs(const llama_memory_recurrent_context * mctx) : mctx(mctx) {}
    virtual ~llm_graph_input_rs() = default;
225
226
227

    void set_input(const llama_ubatch * ubatch) override;

228
229
    bool can_reuse(const llm_graph_params & params) override;

230
    ggml_tensor * s_copy;  // I32 [n_rs]
231

232
233
234
235
    // views of s_copy, computed once per graph
    // and shared across layers which use build_rs
    ggml_tensor * s_copy_main;   // I32 [n_seqs]
    ggml_tensor * s_copy_extra;  // I32 [n_rs - n_seqs]
236

237
    const llama_memory_recurrent_context * mctx;
238
239
240
241

    // used in view offsets, need to match for valid graph reuse
    uint32_t head;
    int32_t rs_z;
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
};

class llm_graph_input_cross_embd : public llm_graph_input_i {
public:
    llm_graph_input_cross_embd(
            const llama_cross * cross) : cross(cross) {}
    virtual ~llm_graph_input_cross_embd() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * cross_embd; // F32 [n_embd, n_outputs_enc]

    const llama_cross * cross;
};

class llm_graph_input_attn_no_cache : public llm_graph_input_i {
public:
    llm_graph_input_attn_no_cache(const llama_hparams & hparams, const llama_cparams & cparams) :
        hparams(hparams),
        cparams(cparams) {
    }
    ~llm_graph_input_attn_no_cache() = default;

    void set_input(const llama_ubatch * ubatch) override;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
267
268
269
270
271
272
273
274
    ggml_tensor * get_kq_mask()     const { return self_kq_mask_cnv; }
    ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }

    // n_tokens == n_batch
    ggml_tensor * self_kq_mask         = nullptr; // F32 [n_tokens, n_batch/n_stream, 1, n_stream]
    ggml_tensor * self_kq_mask_cnv     = nullptr; //     [n_tokens, n_batch/n_stream, 1, n_stream]
    ggml_tensor * self_kq_mask_swa     = nullptr; // F32 [n_tokens, n_batch/n_stream, 1, n_stream]
    ggml_tensor * self_kq_mask_swa_cnv = nullptr; //     [n_tokens, n_batch/n_stream, 1, n_stream]
275

276
277
    const llama_hparams hparams;
    const llama_cparams cparams;
278
279
};

Daniel Hiltgen's avatar
Daniel Hiltgen committed
280
class llm_graph_input_attn_kv : public llm_graph_input_i {
281
public:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
282
    llm_graph_input_attn_kv(
283
284
            const llama_hparams & hparams,
            const llama_cparams & cparams,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
285
            const llama_kv_cache_context * mctx) :
286
287
        hparams(hparams),
        cparams(cparams),
288
        mctx(mctx) {
289
    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
290
    ~llm_graph_input_attn_kv() = default;
291
292
293

    void set_input(const llama_ubatch * ubatch) override;

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    bool can_reuse(const llm_graph_params & params) override;

    ggml_tensor * get_k_idxs() const { return self_k_idxs; }
    ggml_tensor * get_v_idxs() const { return self_v_idxs; }

    ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }

    ggml_tensor * self_k_idxs = nullptr; // I64 [n_batch]
    ggml_tensor * self_v_idxs = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]

    ggml_tensor * self_kq_mask     = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
    ggml_tensor * self_kq_mask_cnv = nullptr; //     [n_kv, n_batch/n_stream, 1, n_stream]

    // note: these have to be copies because in order to be able to reuse a graph, its inputs
    //       need to carry these parameters with them. otherwise, they can point to freed
    //       llm_graph_params from a previous batch, causing stack-use-after-return
    const llama_hparams hparams;
    const llama_cparams cparams;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
313
    const llama_kv_cache_context * mctx;
314
315
};

Daniel Hiltgen's avatar
Daniel Hiltgen committed
316
class llm_graph_input_attn_kv_iswa : public llm_graph_input_i {
317
public:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
318
    llm_graph_input_attn_kv_iswa(
319
320
            const llama_hparams & hparams,
            const llama_cparams & cparams,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
321
            const llama_kv_cache_iswa_context * mctx) :
322
323
324
325
        hparams(hparams),
        cparams(cparams),
        mctx(mctx) {
    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
326
    ~llm_graph_input_attn_kv_iswa() = default;
327
328
329
330
331
332
333
334
335
336

    void set_input(const llama_ubatch * ubatch) override;

    bool can_reuse(const llm_graph_params & params) override;

    ggml_tensor * get_k_idxs()     const { return self_k_idxs; }
    ggml_tensor * get_v_idxs()     const { return self_v_idxs; }
    ggml_tensor * get_k_idxs_swa() const { return self_k_idxs_swa; }
    ggml_tensor * get_v_idxs_swa() const { return self_v_idxs_swa; }

337
338
339
    ggml_tensor * get_kq_mask()     const { return self_kq_mask_cnv; }
    ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }

340
341
342
343
    ggml_tensor * self_k_idxs     = nullptr; // I64 [n_batch]
    ggml_tensor * self_v_idxs     = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
    ggml_tensor * self_k_idxs_swa = nullptr; // I64 [n_batch]
    ggml_tensor * self_v_idxs_swa = nullptr; // I64 [n_batch] or [n_batch*n_embd_v_gqa]
344

345
346
347
348
349
350
351
    ggml_tensor * self_kq_mask         = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
    ggml_tensor * self_kq_mask_cnv     = nullptr; //     [n_kv, n_batch/n_stream, 1, n_stream]
    ggml_tensor * self_kq_mask_swa     = nullptr; // F32 [n_kv, n_batch/n_stream, 1, n_stream]
    ggml_tensor * self_kq_mask_swa_cnv = nullptr; //     [n_kv, n_batch/n_stream, 1, n_stream]

    const llama_hparams hparams;
    const llama_cparams cparams;
352

Daniel Hiltgen's avatar
Daniel Hiltgen committed
353
    const llama_kv_cache_iswa_context * mctx;
354
355
356
357
358
359
360
361
362
363
364
};

class llm_graph_input_attn_cross : public llm_graph_input_i {
public:
    llm_graph_input_attn_cross(const llama_cross * cross) : cross(cross) {}
    ~llm_graph_input_attn_cross() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * get_kq_mask_cross() const { return cross_kq_mask_cnv; }

365
366
    ggml_tensor * cross_kq_mask     = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]
    ggml_tensor * cross_kq_mask_cnv = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]
367
368
369
370

    const llama_cross * cross = nullptr;
};

371
372
373
class llm_graph_input_mem_hybrid : public llm_graph_input_i {
public:
    llm_graph_input_mem_hybrid(
374
            const llama_cparams & cparams,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
375
            std::unique_ptr<llm_graph_input_attn_kv> inp_attn,
376
377
            std::unique_ptr<llm_graph_input_rs>      inp_rs,
            const llama_memory_hybrid_context *      mctx) :
378
379
        inp_attn(std::move(inp_attn)),
        inp_rs(std::move(inp_rs)),
380
        cparams(cparams),
381
382
383
384
385
        mctx(mctx) { }
    virtual ~llm_graph_input_mem_hybrid() = default;

    void set_input(const llama_ubatch * ubatch) override;

386
387
    bool can_reuse(const llm_graph_params & params) override;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
388
389
    std::unique_ptr<llm_graph_input_attn_kv> inp_attn;
    std::unique_ptr<llm_graph_input_rs>      inp_rs;
390

Daniel Hiltgen's avatar
Daniel Hiltgen committed
391
392
    llm_graph_input_attn_kv * get_attn() const { return inp_attn.get(); }
    llm_graph_input_rs      * get_recr() const { return inp_rs.get(); }
393

394
395
    const llama_cparams cparams;

396
397
398
    const llama_memory_hybrid_context * mctx;
};

399
400
401
402
403
404
405
406
407
408
//
// llm_graph_result
//

// these objects deliver the result from the graph build process back to the llama_context
// note that the input tensors created for the graph are referenced here - the goal is to be able to populate their
//   specific data, by calling the set_inputs() method
// along with the input tensors, the object also provides commonly used outputs tensors, such as logits, embeddings, etc.
//   these are used by the llama_context to extact the relevant data, based on the compute parameters

409
410
// callback that allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
using llm_graph_cb = std::function<void(const llama_ubatch & ubatch, ggml_tensor * cur, const char * name, int il)>;
411

412
class llm_graph_result;
413

414
415
struct llm_graph_params {
    llm_arch arch = LLM_ARCH_UNKNOWN;
416

417
418
    llama_hparams hparams;
    llama_cparams cparams;
419

420
    llama_ubatch ubatch; // note: intentionally make a copy
421

422
    llm_graph_type gtype;
423

424
425
    ggml_backend_sched_t sched;
    ggml_backend_t backend_cpu;
426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    const llama_adapter_cvec     * cvec;
    const llama_adapter_loras    * loras;
    const llama_memory_context_i * mctx;
    const llama_cross            * cross;

    uint32_t n_outputs;

    llm_graph_cb cb;

    llm_graph_result * res;

    // return true if the "other" params would result in a graph with the same topology as with the current params
    //   having the same topology allows us to reuse the graph in some cases
    bool allow_reuse(const llm_graph_params & other) const {
        // first check the ubatch
        bool can_reuse_ubatch =
            ubatch.equal_seqs() == other.ubatch.equal_seqs() &&
            ubatch.n_tokens     == other.ubatch.n_tokens &&
            ubatch.n_seq_tokens == other.ubatch.n_seq_tokens &&
            ubatch.n_seqs       == other.ubatch.n_seqs &&
            ubatch.n_seqs_unq   == other.ubatch.n_seqs_unq &&
            (
                (!ubatch.token && !other.ubatch.token) ||
                (!ubatch.embd  && !other.ubatch.embd)
            );

        // when we split the batch using "equal_seqs" we have to verify that the participating sequences are the same
        //   the reason is because the set of attention streams would be different for different sequences
        if (can_reuse_ubatch && ubatch.equal_seqs()) {
            if (!ubatch.data) {
                // if the old ubatch does not own it's data, then we cannot guarantee that it is still alive, and
                //   therefore we cannot perform the sequence id check. normally should never happen
                can_reuse_ubatch = false;
            } else {
                for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
                    can_reuse_ubatch &= ubatch.seq_id_unq[s] == other.ubatch.seq_id_unq[s];
                }
            }
465
466
        }

467
468
469
470
471
472
473
474
475
476
477
478
479
        if (!can_reuse_ubatch) {
            return false;
        }

        return
            cparams.embeddings  == other.cparams.embeddings  &&
            cparams.causal_attn == other.cparams.causal_attn &&
            arch      == other.arch  &&
            gtype     == other.gtype &&
            cvec      == other.cvec  &&
            loras     == other.loras &&
            cross     == other.cross &&
            n_outputs == other.n_outputs;
480
    }
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
};

class llm_graph_result {
public:
    llm_graph_result(int64_t max_nodes);

    virtual ~llm_graph_result() = default;

    ggml_tensor * get_tokens()      const { return t_tokens; }
    ggml_tensor * get_logits()      const { return t_logits; }
    ggml_tensor * get_embd()        const { return t_embd; }
    ggml_tensor * get_embd_pooled() const { return t_embd_pooled; }

    ggml_cgraph  * get_gf()  const { return gf; }
    ggml_context * get_ctx() const { return ctx_compute.get(); }

    int64_t get_max_nodes() const;

    void reset();

    void set_inputs(const llama_ubatch * ubatch);

    // try to update the existing graph result using the new graph parameters in order to reuse it
    // this can only be done if we determine that the resulting graph using the new graph parameters
    //   would be identical to the existing graph. in that case, we simply have to update the memory
    //   contexts of the input tensors of the graph and we can reuse it for another computation
    // return true if the graph was updated and can be reused
    bool can_reuse(const llm_graph_params & params);

    llm_graph_input_i * add_input(llm_graph_input_ptr input);

    void set_params(const llm_graph_params & params);
513
514

    // important graph nodes
515
    ggml_tensor * t_tokens      = nullptr;
516
517
518
519
520
521
    ggml_tensor * t_logits      = nullptr;
    ggml_tensor * t_embd        = nullptr;
    ggml_tensor * t_embd_pooled = nullptr;

    std::vector<llm_graph_input_ptr> inputs;

522
    ggml_context_ptr ctx_compute;
523

524
525
    // memory buffers used to evaluate the model
    std::vector<uint8_t> buf_compute_meta;
526

527
    ggml_cgraph * gf;
528

529
    int64_t max_nodes;
530

531
532
533
534
535
private:
    // keep a copy of the previous graph parameters
    // we will use this to determine whether the graph can be reused by comparing them with the new parameters
    // note: these are updated after constructing the new graph
    llm_graph_params params;
536

537
538
539
    // env: LLAMA_GRAPH_RESULT_DEBUG
    int debug = 0;
};
540

541
using llm_graph_result_ptr = std::unique_ptr<llm_graph_result>;
542

543
544
545
//
// llm_graph_context
//
546

547
548
// used in build_rs to properly order writes and avoid unnecessary copies
using llm_graph_get_rows_fn = std::function<ggml_tensor * (ggml_context *, ggml_tensor * states, ggml_tensor * ids)>;
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

struct llm_graph_context {
    const llm_arch arch;

    const llama_hparams & hparams;
    const llama_cparams & cparams;
    const llama_ubatch  & ubatch;

    const int64_t n_embd;
    const int64_t n_layer;
    const int64_t n_rot;
    const int64_t n_ctx;       // user-specified context size (can be different from n_ctx_train)
    const int64_t n_head;
    const int64_t n_head_kv;
    const int64_t n_embd_head_k;
    const int64_t n_embd_k_gqa;
    const int64_t n_embd_head_v;
    const int64_t n_embd_v_gqa;
    const int64_t n_expert;
    const int64_t n_expert_used;

    const float freq_base;
    const float freq_scale;
    const float ext_factor;
    const float attn_factor;
    const float beta_fast;
    const float beta_slow;
    const float norm_eps;
    const float norm_rms_eps;

579
580
    const int64_t n_tokens;
    const int64_t n_outputs;
581
582
583
584
585
    const int32_t n_ctx_orig; // yarn

    const enum llama_pooling_type pooling_type;
    const enum llama_rope_type    rope_type;

586
    ggml_backend_sched_t sched;
587

588
    ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
589

590
591
592
593
    const llama_adapter_cvec     * cvec;
    const llama_adapter_loras    * loras;
    const llama_memory_context_i * mctx;
    const llama_cross            * cross;
594
595
596

    const llm_graph_cb & cb_func;

597
    llm_graph_result * res;
598

599
600
    ggml_context * ctx0 = nullptr;
    ggml_cgraph  * gf   = nullptr;
601

602
603
    llm_graph_context(const llm_graph_params & params);
    virtual ~llm_graph_context() = default;
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

    void cb(ggml_tensor * cur, const char * name, int il) const;

    //
    // common
    //

    ggml_tensor * build_cvec(
             ggml_tensor * cur,
                     int   il) const;

    // do mat_mul, while optionally apply lora
    ggml_tensor * build_lora_mm(
              ggml_tensor * w,
              ggml_tensor * cur) const;

    // do mat_mul_id, while optionally apply lora
    ggml_tensor * build_lora_mm_id(
              ggml_tensor * w,   // ggml_tensor * as
              ggml_tensor * cur, // ggml_tensor * b
              ggml_tensor * ids) const;

    ggml_tensor * build_norm(
             ggml_tensor * cur,
             ggml_tensor * mw,
             ggml_tensor * mb,
           llm_norm_type   type,
                     int   il) const;

    ggml_tensor * build_ffn(
             ggml_tensor * cur,
             ggml_tensor * up,
             ggml_tensor * up_b,
             ggml_tensor * up_s,
             ggml_tensor * gate,
             ggml_tensor * gate_b,
             ggml_tensor * gate_s,
             ggml_tensor * down,
             ggml_tensor * down_b,
             ggml_tensor * down_s,
             ggml_tensor * act_scales,
         llm_ffn_op_type   type_op,
       llm_ffn_gate_type   type_gate,
                     int   il) const;

649
    // build MoE FFN without bias tensors
650
651
652
653
654
655
656
657
658
659
660
661
662
663
    ggml_tensor * build_moe_ffn(
             ggml_tensor * cur,
             ggml_tensor * gate_inp,
             ggml_tensor * up_exps,
             ggml_tensor * gate_exps,
             ggml_tensor * down_exps,
             ggml_tensor * exp_probs_b,
                 int64_t   n_expert,
                 int64_t   n_expert_used,
         llm_ffn_op_type   type_op,
                    bool   norm_w,
                    bool   scale_w,
                   float   w_scale,
            llama_expert_gating_func_type gating_op,
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
                     int   il,
             ggml_tensor * probs_in = nullptr) const;

    ggml_tensor * build_moe_ffn(
             ggml_tensor * cur,
             ggml_tensor * gate_inp,
             ggml_tensor * gate_inp_b,
             ggml_tensor * up_exps,
             ggml_tensor * up_exps_b,
             ggml_tensor * gate_exps,
             ggml_tensor * gate_exps_b,
             ggml_tensor * down_exps,
             ggml_tensor * down_exps_b,
             ggml_tensor * exp_probs_b,
                 int64_t   n_expert,
                 int64_t   n_expert_used,
         llm_ffn_op_type   type_op,
                    bool   norm_w,
                    bool   scale_w,
                   float   w_scale,
            llama_expert_gating_func_type gating_op,
                     int   il,
             ggml_tensor * probs_in = nullptr) const;
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708

    //
    // inputs
    //

    ggml_tensor * build_inp_embd(ggml_tensor * tok_embd) const;
    ggml_tensor * build_inp_pos() const;
    ggml_tensor * build_inp_attn_scale() const;
    ggml_tensor * build_inp_out_ids() const;
    ggml_tensor * build_inp_mean() const;
    ggml_tensor * build_inp_cls() const;

    ggml_tensor * build_inp_cross_embd() const;
    ggml_tensor * build_inp_pos_bucket_enc() const;
    ggml_tensor * build_inp_pos_bucket_dec() const;
    ggml_tensor * build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const;

    //
    // attention
    //

    ggml_tensor * build_attn_mha(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
709
710
711
712
713
714
715
716
717
            ggml_tensor * q,       // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k,       // [n_embd_head_k, n_head_k, n_tokens]
            ggml_tensor * v,       // [n_embd_head_v, n_head_v, n_tokens] (v_trans == false)
            ggml_tensor * kq_b,
            ggml_tensor * kq_mask,
            ggml_tensor * sinks,   // [n_head_q]
            ggml_tensor * v_mla,   // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
                  float   kq_scale,
                    int   il) const;
718
719
720
721
722
723
724
725
726
727
728

    llm_graph_input_attn_no_cache * build_attn_inp_no_cache() const;

    ggml_tensor * build_attn(
            llm_graph_input_attn_no_cache * inp,
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
            ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
729
            ggml_tensor * sinks, // [n_head_q]
730
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
731
732
733
                  float   kq_scale,
                    int   il) const;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
734
    llm_graph_input_attn_kv * build_attn_inp_kv() const;
735
736

    ggml_tensor * build_attn(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
737
            llm_graph_input_attn_kv * inp,
738
739
740
741
742
743
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
            ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
744
            ggml_tensor * sinks, // [n_head_q]
745
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
746
747
748
                  float   kq_scale,
                    int   il) const;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
749
    llm_graph_input_attn_kv_iswa * build_attn_inp_kv_iswa() const;
750
751
752

    // note: if k_cur or v_cur are not provided, they will not be stored in the memory
    ggml_tensor * build_attn(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
753
            llm_graph_input_attn_kv_iswa * inp,
754
755
756
757
758
759
760
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens] optional
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens] optional
            ggml_tensor * kq_b,
            ggml_tensor * sinks, // [n_head_q]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
761
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
762
763
764
                  float   kq_scale,
                    int   il) const;

765
766
767
768
769
770
771
772
773
774
    llm_graph_input_attn_cross * build_attn_inp_cross() const;

    ggml_tensor * build_attn(
            llm_graph_input_attn_cross * inp,
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
            ggml_tensor * kq_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
775
            ggml_tensor * sinks, // [n_head_q]
776
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
777
778
779
780
781
782
783
                  float   kq_scale,
                    int   il) const;

    //
    // recurrent
    //

784
    // TODO: move this implementation to llama_memory_recurrent.
Daniel Hiltgen's avatar
Daniel Hiltgen committed
785
    //       this is analogous to llama_kv_cache::cpy_k / cpy_v
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
    //       when moving, avoid passing `ggml_cgraph` - only pass `ggml_context`. would likely need to split the
    //         implementation in 2 separate methods. the goal is to avoid calling `ggml_build_forward_expand` in
    //         `llama_memory_recurrent`
    ggml_tensor * build_rs(
            ggml_tensor * s,
            ggml_tensor * state_copy_main,
            ggml_tensor * state_copy_extra,
                int32_t   state_size,
                int32_t   n_seqs,
               uint32_t   n_rs,
               uint32_t   rs_head,
               uint32_t   rs_size,
                int32_t   rs_zero,
            const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;

    llm_graph_input_rs * build_rs_inp() const;

    ggml_tensor * build_rs(
            llm_graph_input_rs * inp,
            ggml_tensor * s,
                int32_t   state_size,
                int32_t   n_seqs,
            const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;
809
810

    ggml_tensor * build_rwkv_token_shift_load(
811
812
813
        llm_graph_input_rs * inp,
        const llama_ubatch & ubatch,
                       int   il) const;
814
815
816
817
818

    ggml_tensor * build_rwkv_token_shift_store(
             ggml_tensor * token_shift,
      const llama_ubatch & ubatch,
                     int   il) const;
819
820
821
822
823
    //
    // hybrid
    //

    llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const;
824
825
826
827
828
829
830
831
832
833

    //
    // pooling
    //

    void build_pooling(
            ggml_tensor * cls,
            ggml_tensor * cls_b,
            ggml_tensor * cls_out,
            ggml_tensor * cls_out_b) const;
834
835
836
837
838
839
840
841

    //
    // dense (out)
    //

    void build_dense_out(
            ggml_tensor * dense_2,
            ggml_tensor * dense_3) const;
842
};
843
844
845

// TODO: better name
int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional);