model.go 5.96 KB
Newer Older
Michael Yang's avatar
llama4  
Michael Yang committed
1
2
3
4
5
package llama4

import (
	"bytes"
	"image"
Michael Yang's avatar
Michael Yang committed
6
7
	"slices"
	"sync"
Michael Yang's avatar
llama4  
Michael Yang committed
8
9
10
11
12
13
14
15
16
17
18
19

	"github.com/ollama/ollama/fs"
	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Model struct {
	model.Base
	model.BytePairEncoding
Michael Yang's avatar
Michael Yang committed
20
	ImageProcessor
Michael Yang's avatar
llama4  
Michael Yang committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	*VisionModel `gguf:"v,vision"`
	*Projector   `gguf:"mm"`
	*TextModel
}

type Projector struct {
	Linear1 *nn.Linear `gguf:"linear_1"`
}

func (p *Projector) Forward(ctx ml.Context, visionOutputs ml.Tensor) ml.Tensor {
	return p.Linear1.Forward(ctx, visionOutputs)
}

func New(c fs.Config) (model.Model, error) {
	m := Model{
		BytePairEncoding: model.NewBytePairEncoding(
Michael Yang's avatar
Michael Yang committed
38
39
			c.String("tokenizer.ggml.pretokenizer",
				`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
Michael Yang's avatar
llama4  
Michael Yang committed
40
41
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
Michael Yang's avatar
Michael Yang committed
42
				Types:  c.Ints("tokenizer.ggml.token_type"),
Michael Yang's avatar
llama4  
Michael Yang committed
43
44
45
46
47
				Merges: c.Strings("tokenizer.ggml.merges"),
				BOS:    int32(c.Uint("tokenizer.ggml.bos_token_id")),
				AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
				EOS:    int32(c.Uint("tokenizer.ggml.eos_token_id")),
				AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
Michael Yang's avatar
Michael Yang committed
48
49
50
				// TODO: set EOT to EOS otherwise 0 will stop generation
				EOT:    int32(c.Uint("tokenizer.ggml.eos_token_id")),
				AddEOT: c.Bool("tokenizer.ggml.add_eos_token", false),
Michael Yang's avatar
llama4  
Michael Yang committed
51
52
			},
		),
Michael Yang's avatar
Michael Yang committed
53
54
55
		ImageProcessor: newImageProcessor(c),
		VisionModel:    newVisionModel(c),
		TextModel:      newTextModel(c),
Michael Yang's avatar
llama4  
Michael Yang committed
56
57
58
	}

	m.Cache = kvcache.NewWrapperCache(
Michael Yang's avatar
Michael Yang committed
59
		kvcache.NewChunkedAttentionCache(int32(c.Uint("attention.chunk_size", 8192)), m.Shift),
Michael Yang's avatar
llama4  
Michael Yang committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
		kvcache.NewCausalCache(m.Shift),
	)

	return &m, nil
}

func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
	if len(m.VisionModel.Layers) < 1 {
		return nil, model.ErrNoVisionModel
	}

	img, _, err := image.Decode(bytes.NewReader(multimodalData))
	if err != nil {
		return nil, err
	}

Michael Yang's avatar
Michael Yang committed
76
	pixelsLocal, pixelsGlobal, size, err := m.ProcessImage(img)
Michael Yang's avatar
llama4  
Michael Yang committed
77
78
79
80
	if err != nil {
		return nil, err
	}

Michael Yang's avatar
Michael Yang committed
81
	tilesLocal, err := ctx.Input().FromFloatSlice(pixelsLocal, size.X, size.Y, m.numChannels)
Michael Yang's avatar
llama4  
Michael Yang committed
82
83
84
85
	if err != nil {
		return nil, err
	}

Michael Yang's avatar
Michael Yang committed
86
	ratioW, ratioH := size.X/m.imageSize, size.Y/m.imageSize
Michael Yang's avatar
Michael Yang committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

	tilesLocal = tilesLocal.Reshape(ctx, size.X/ratioW, ratioW, size.Y, m.numChannels).Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	tilesLocal = tilesLocal.Reshape(ctx, size.X/ratioW*size.Y/ratioH, ratioH, ratioW, m.numChannels).Permute(ctx, 0, 3, 2, 1).Contiguous(ctx)
	tilesLocal = tilesLocal.Reshape(ctx, size.X/ratioW, size.Y/ratioH, m.numChannels, ratioH*ratioW)

	pixelValues := tilesLocal

	if len(pixelsGlobal) > 0 {
		tilesGlobal, err := ctx.Input().FromFloatSlice(pixelsGlobal, m.imageSize, m.imageSize, m.numChannels)
		if err != nil {
			return nil, err
		}

		pixelValues = pixelValues.Concat(ctx, tilesGlobal, 3)
	}

Michael Yang's avatar
llama4  
Michael Yang committed
103
104
	visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
	visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0), visionOutputs.Dim(1)*visionOutputs.Dim(2)*visionOutputs.Dim(3))
Michael Yang's avatar
Michael Yang committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
	projectedOutputs := m.Projector.Forward(ctx, visionOutputs)
	return &chunks{Model: m, Tensor: projectedOutputs, aspectRatio: image.Point{ratioW, ratioH}}, nil
}

type chunks struct {
	*Model
	ml.Tensor
	aspectRatio image.Point

	dataOnce sync.Once
	data     []float32
}

type chunk struct {
	*chunks
	s, n int
}

func (r *chunk) floats() []float32 {
	r.dataOnce.Do(func() {
		temp := r.Backend().NewContext()
		defer temp.Close()
		temp.Forward(r.Tensor).Compute(r.Tensor)
		r.data = r.Floats()
	})

	return r.data[r.s*r.Dim(0) : (r.s+r.n)*r.Dim(0)]
Michael Yang's avatar
llama4  
Michael Yang committed
132
133
}

Michael Yang's avatar
Michael Yang committed
134
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
Michael Yang's avatar
Michael Yang committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
	var result []input.Input
	for _, inp := range inputs {
		if inp.Multimodal == nil {
			result = append(result, inp)
			continue
		}

		t := inp.Multimodal.(*chunks)
		var imageInputs []input.Input
		imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_start|>

		var offset int
		patchesPerChunk := t.Dim(1)
		if t.aspectRatio.Y*t.aspectRatio.X > 1 {
			patchesPerChunk = t.Dim(1) / (t.aspectRatio.X*t.aspectRatio.Y + 1)

			for range t.aspectRatio.Y {
				for x := range t.aspectRatio.X {
					imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: &chunk{t, offset, patchesPerChunk}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
					imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
					if x < t.aspectRatio.X-1 {
						imageInputs = append(imageInputs, input.Input{Token: 200084}) // <|tile_x_separator|>
					}
					offset += patchesPerChunk
				}

				imageInputs = append(imageInputs, input.Input{Token: 200085}) // <|tile_y_separator|>
			}
		}

		imageInputs = append(imageInputs, input.Input{Token: 200090})                                                                                                                 // <|image|>
		imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: &chunk{t, offset, patchesPerChunk}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
		imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
		imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_end|>

		result = append(result, imageInputs...)
	}

	return result, nil
Michael Yang's avatar
Michael Yang committed
174
175
}

Michael Yang's avatar
llama4  
Michael Yang committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
	positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
	if err != nil {
		return nil, err
	}

	outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
	if err != nil {
		return nil, err
	}

	return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
}

func init() {
	model.Register("llama4", New)
}